These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 26862557)

  • 1. Experimental data regarding the characterization of the flame behavior near lean blowout in a non-premixed liquid fuel burner.
    De Giorgi MG; Sciolti A; Campilongo S; Ficarella A
    Data Brief; 2016 Mar; 6():189-93. PubMed ID: 26862557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental data regarding the effects of urea addition into liquid fuel to combustion enhancement of a low NO
    De Giorgi MG; Ciccarella G; Fontanarosa D; Pescini E; Ficarella A
    Data Brief; 2021 Feb; 34():106702. PubMed ID: 33437856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of recurrence quantification analysis for early detection of lean blowout in a swirl-stabilized dump combustor.
    De S; Bhattacharya A; Mondal S; Mukhopadhyay A; Sen S
    Chaos; 2020 Apr; 30(4):043115. PubMed ID: 32357653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dataset of temperature, heat flux and infrared emission from flat premixed laminar methane-air flames.
    Pelzmann T; Robert É
    Data Brief; 2022 Jun; 42():108281. PubMed ID: 35651669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Response of Ultralean Combustion of CH
    Habib R; Yadollahi B; Saeed A; Doranehgard MH; Karimi N
    Energy Fuels; 2021 May; 35(10):8909-8921. PubMed ID: 34276125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability and Emission Characteristics of a Stratified Hydrogen-Enriched Oxy-Methane Flame on a Multihole Burner: An Experimental Study.
    Abdelhafez A
    ACS Omega; 2024 Apr; 9(17):18882-18892. PubMed ID: 38708198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Investigation of Lean Methane-Air Laminar Premixed Flames at Engine-Relevant Temperatures.
    Luo C; Yu Z; Wang Y; Ai Y
    ACS Omega; 2021 Jul; 6(28):17977-17987. PubMed ID: 34308032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Acoustic Excitation on the Combustion Instability of Hydrogen-Methane Lean Premixed Swirling Flames.
    Deng K; Zhong Y; Wang M; Zhong Y; Luo KH
    ACS Omega; 2020 Apr; 5(15):8744-8753. PubMed ID: 32337436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Analysis of Blast Furnace Gas Combustion in a Laboratory Premixed Burner.
    Compais P; Arroyo J; González-Espinosa A; Castán-Lascorz MÁ; Gil A
    ACS Omega; 2022 Jul; 7(28):24498-24510. PubMed ID: 35874195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lean blowout detection using topological data analysis.
    Bhattacharya A; Mondal S; De S; Mukhopadhyay A; Sen S
    Chaos; 2024 Jan; 34(1):. PubMed ID: 38170473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and Laminar Flame Speed of an Ammonia/Methane/Air Premixed Flame under Varying Pressure and Equivalence Ratio.
    Rocha RC; Zhong S; Xu L; Bai XS; Costa M; Cai X; Kim H; Brackmann C; Li Z; Aldén M
    Energy Fuels; 2021 May; 35(9):7179-7192. PubMed ID: 34054210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entropy Generation and Exergy Analysis of Premixed Fuel-Air Combustion in Micro Porous Media Burner.
    Ismail NC; Abdullah MZ; Mazlan NM; Mustafa KF
    Entropy (Basel); 2020 Sep; 22(10):. PubMed ID: 33286873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double-Layer Micro Porous Media Burner from Lean to Rich Fuel Mixture: Analysis of Entropy Generation and Exergy Efficiency.
    Ismail NC; Abdullah MZ; Mustafa KF; Mazlan NM; Gunnasegaran P; Irawan AP
    Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of renewable diesel particulate matter gathered from non-premixed and partially premixed flame burners and from a diesel engine.
    Cadrazco M; Santamaría A; Jaramillo IC; Kaur K; Kelly KE; Agudelo JR
    Combust Flame; 2020 Apr; 214():65-79. PubMed ID: 32189720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-Dimensional Numerical Study of Methane-Air Combustion Within Catalytic and Non-catalytic Porous Medium.
    Gao HB; Zong SC; Feng XB; Zhang CW
    Front Chem; 2020; 8():511792. PubMed ID: 33240839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Idealized gas turbine combustor for performance research and validation of large eddy simulations.
    Williams TC; Schefer RW; Oefelein JC; Shaddix CR
    Rev Sci Instrum; 2007 Mar; 78(3):035114. PubMed ID: 17411224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of complexities in combustion instability in a lean premixed gas-turbine model combustor.
    Gotoda H; Amano M; Miyano T; Ikawa T; Maki K; Tachibana S
    Chaos; 2012 Dec; 22(4):043128. PubMed ID: 23278063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into the Ozone-Assisted Low-Temperature Combustion of Dimethyl Ether by Means of Stabilized Cool Flames.
    Panaget T; Mokrani N; Batut S; Lahccen A; Fenard Y; Pillier L; Vanhove G
    J Phys Chem A; 2021 Oct; 125(41):9167-9179. PubMed ID: 34636244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dataset for transient 3D simulations of turbulent premixed flames of Gas-to-Liquid (GTL) fuel.
    Sadeq AM; Ahmed SF; Sleiti AK
    Data Brief; 2021 Jun; 36():106956. PubMed ID: 33889684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early detection of lean blowout using recurrence network for varying degrees of premixedness.
    Bhattacharya A; De S; Mondal S; Mukhopadhyay A; Sen S
    Chaos; 2022 Jun; 32(6):063105. PubMed ID: 35778125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.