These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Stress induced by premature chromatin condensation triggers chromosome shattering and chromothripsis at DNA sites still replicating in micronuclei or multinucleate cells when primary nuclei enter mitosis. Terzoudi GI; Karakosta M; Pantelias A; Hatzi VI; Karachristou I; Pantelias G Mutat Res Genet Toxicol Environ Mutagen; 2015 Nov; 793():185-98. PubMed ID: 26520389 [TBL] [Abstract][Full Text] [Related]
3. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Kloosterman WP; Tavakoli-Yaraki M; van Roosmalen MJ; van Binsbergen E; Renkens I; Duran K; Ballarati L; Vergult S; Giardino D; Hansson K; Ruivenkamp CA; Jager M; van Haeringen A; Ippel EF; Haaf T; Passarge E; Hochstenbach R; Menten B; Larizza L; Guryev V; Poot M; Cuppen E Cell Rep; 2012 Jun; 1(6):648-55. PubMed ID: 22813740 [TBL] [Abstract][Full Text] [Related]
4. Processing-Challenges Generated by Clusters of DNA Double-Strand Breaks Underpin Increased Effectiveness of High-LET Radiation and Chromothripsis. Mladenov E; Saha J; Iliakis G Adv Exp Med Biol; 2018; 1044():149-168. PubMed ID: 29956296 [TBL] [Abstract][Full Text] [Related]
5. Interphase Cytogenetic Analysis of G0 Lymphocytes Exposed to α-Particles, C-Ions, and Protons Reveals their Enhanced Effectiveness for Localized Chromosome Shattering-A Critical Risk for Chromothripsis. Pantelias A; Zafiropoulos D; Cherubini R; Sarchiapone L; De Nadal V; Pantelias GE; Georgakilas AG; Terzoudi GI Cancers (Basel); 2020 Aug; 12(9):. PubMed ID: 32825012 [TBL] [Abstract][Full Text] [Related]
6. Catastrophic cellular events leading to complex chromosomal rearrangements in the germline. Fukami M; Shima H; Suzuki E; Ogata T; Matsubara K; Kamimaki T Clin Genet; 2017 May; 91(5):653-660. PubMed ID: 27888607 [TBL] [Abstract][Full Text] [Related]
8. Genomic Characterization of Chromosomal Insertions: Insights into the Mechanisms Underlying Chromothripsis. Kato T; Ouchi Y; Inagaki H; Makita Y; Mizuno S; Kajita M; Ikeda T; Takeuchi K; Kurahashi H Cytogenet Genome Res; 2017; 153(1):1-9. PubMed ID: 29073611 [TBL] [Abstract][Full Text] [Related]
9. Chromoanagenesis from radiation-induced genome damage in Populus. Guo W; Comai L; Henry IM PLoS Genet; 2021 Aug; 17(8):e1009735. PubMed ID: 34432802 [TBL] [Abstract][Full Text] [Related]
10. Chromosomal Rearrangements and Chromothripsis: The Alternative End Generation Model. de Groot D; Spanjaard A; Hogenbirk MA; Jacobs H Int J Mol Sci; 2023 Jan; 24(1):. PubMed ID: 36614236 [TBL] [Abstract][Full Text] [Related]
11. Mechanistic origins of diverse genome rearrangements in cancer. Dahiya R; Hu Q; Ly P Semin Cell Dev Biol; 2022 Mar; 123():100-109. PubMed ID: 33824062 [TBL] [Abstract][Full Text] [Related]
12. SPICE-NIRS microbeam: a focused vertical system for proton irradiation of a single cell for radiobiological research. Konishi T; Oikawa M; Suya N; Ishikawa T; Maeda T; Kobayashi A; Shiomi N; Kodama K; Hamano T; Homma-Takeda S; Isono M; Hieda K; Uchihori Y; Shirakawa Y J Radiat Res; 2013 Jul; 54(4):736-47. PubMed ID: 23287773 [TBL] [Abstract][Full Text] [Related]
13. Chromothripsis: potential origin in gametogenesis and preimplantation cell divisions. A review. Pellestor F; Gatinois V; Puechberty J; Geneviève D; Lefort G Fertil Steril; 2014 Dec; 102(6):1785-96. PubMed ID: 25439810 [TBL] [Abstract][Full Text] [Related]
14. [Chromothripsis, an unexpected novel form of complexity for chromosomal rearrangements]. Pellestor F; Gatinois V; Puechberty J; Geneviève D; Lefort G Med Sci (Paris); 2014 Mar; 30(3):266-73. PubMed ID: 24685217 [TBL] [Abstract][Full Text] [Related]
15. Non-homologous end joining shapes the genomic rearrangement landscape of chromothripsis from mitotic errors. Hu Q; Espejo Valle-Inclán J; Dahiya R; Guyer A; Mazzagatti A; Maurais EG; Engel JL; Lu H; Davis AJ; Cortés-Ciriano I; Ly P Nat Commun; 2024 Jul; 15(1):5611. PubMed ID: 38965240 [TBL] [Abstract][Full Text] [Related]
16. Genome-wide analysis of recurrent copy-number alterations and copy-neutral loss of heterozygosity in head and neck squamous cell carcinoma. Marescalco MS; Capizzi C; Condorelli DF; Barresi V J Oral Pathol Med; 2014 Jan; 43(1):20-7. PubMed ID: 23750501 [TBL] [Abstract][Full Text] [Related]
17. 'BioQuaRT' project: design of a novel in situ protocol for the simultaneous visualisation of chromosomal aberrations and micronuclei after irradiation at microbeam facilities. Patrono C; Monteiro Gil O; Giesen U; Langner F; Pinto M; Rabus H; Testa A Radiat Prot Dosimetry; 2015 Sep; 166(1-4):197-9. PubMed ID: 25877532 [TBL] [Abstract][Full Text] [Related]
18. Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer. Kloosterman WP; Hoogstraat M; Paling O; Tavakoli-Yaraki M; Renkens I; Vermaat JS; van Roosmalen MJ; van Lieshout S; Nijman IJ; Roessingh W; van 't Slot R; van de Belt J; Guryev V; Koudijs M; Voest E; Cuppen E Genome Biol; 2011 Oct; 12(10):R103. PubMed ID: 22014273 [TBL] [Abstract][Full Text] [Related]
19. Relative biological effectiveness of high linear energy transfer α-particles for the induction of DNA-double-strand breaks, chromosome aberrations and reproductive cell death in SW-1573 lung tumour cells. Franken NA; Hovingh S; Ten Cate R; Krawczyk P; Stap J; Hoebe R; Aten J; Barendsen GW Oncol Rep; 2012 Mar; 27(3):769-74. PubMed ID: 22200791 [TBL] [Abstract][Full Text] [Related]
20. Scrambling the genome in cancer: causes and consequences of complex chromosome rearrangements. Krupina K; Goginashvili A; Cleveland DW Nat Rev Genet; 2024 Mar; 25(3):196-210. PubMed ID: 37938738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]