These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 26862843)

  • 1. A Fabrication Method for Highly Stretchable Conductors with Silver Nanowires.
    Chang CW; Chen SP; Liao YC
    J Vis Exp; 2016 Jan; (107):e53623. PubMed ID: 26862843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly stretchable and conductive silver nanowire thin films formed by soldering nanomesh junctions.
    Chen SP; Liao YC
    Phys Chem Chem Phys; 2014 Oct; 16(37):19856-60. PubMed ID: 25139194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Welding Silver Nanowire Junctions for Transparent Conducting Films by a Rapid Electroplating Method.
    Lin SC; Chang CW; Liao YC
    J Nanosci Nanotechnol; 2018 Jan; 18(1):251-255. PubMed ID: 29768837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes.
    Liang J; Li L; Tong K; Ren Z; Hu W; Niu X; Chen Y; Pei Q
    ACS Nano; 2014 Feb; 8(2):1590-600. PubMed ID: 24471886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversibly stretchable transparent conductive coatings of spray-deposited silver nanowires.
    Akter T; Kim WS
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):1855-9. PubMed ID: 22471630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics.
    Cui Z; Han Y; Huang Q; Dong J; Zhu Y
    Nanoscale; 2018 Apr; 10(15):6806-6811. PubMed ID: 29537024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel.
    Ahn Y; Lee H; Lee D; Lee Y
    ACS Appl Mater Interfaces; 2014; 6(21):18401-7. PubMed ID: 25347028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macroscopic free-standing hierarchical 3D architectures assembled from silver nanowires by ice templating.
    Gao HL; Xu L; Long F; Pan Z; Du YX; Lu Y; Ge J; Yu SH
    Angew Chem Int Ed Engl; 2014 Apr; 53(18):4561-6. PubMed ID: 24683064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible transparent conducting composite films using a monolithically embedded AgNW electrode with robust performance stability.
    Im HG; Jin J; Ko JH; Lee J; Lee JY; Bae BS
    Nanoscale; 2014 Jan; 6(2):711-5. PubMed ID: 24284890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-Step Fabrication of Stretchable Copper Nanowire Conductors by a Fast Photonic Sintering Technique and Its Application in Wearable Devices.
    Ding S; Jiu J; Gao Y; Tian Y; Araki T; Sugahara T; Nagao S; Nogi M; Koga H; Suganuma K; Uchida H
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6190-9. PubMed ID: 26830466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Performance Stretchable Conductive Composite Fibers from Surface-Modified Silver Nanowires and Thermoplastic Polyurethane by Wet Spinning.
    Lu Y; Jiang J; Yoon S; Kim KS; Kim JH; Park S; Kim SH; Piao L
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):2093-2104. PubMed ID: 29277998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Stretchable Metallic Nanowire Networks Reinforced by the Underlying Randomly Distributed Elastic Polymer Nanofibers via Interfacial Adhesion Improvement.
    Jiang Z; Nayeem MOG; Fukuda K; Ding S; Jin H; Yokota T; Inoue D; Hashizume D; Someya T
    Adv Mater; 2019 Sep; 31(37):e1903446. PubMed ID: 31339196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Transparent and Stretchable Conductors Based on a Directional Arrangement of Silver Nanowires by a Microliter-Scale Solution Process.
    Ko Y; Song SK; Kim NH; Chang ST
    Langmuir; 2016 Jan; 32(1):366-73. PubMed ID: 26651285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Sensitive and Stretchable Polyurethane Fiber Strain Sensors with Embedded Silver Nanowires.
    Zhu GJ; Ren PG; Guo H; Jin YL; Yan DX; Li ZM
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23649-23658. PubMed ID: 31252483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel.
    Lee J; Lee P; Lee H; Lee D; Lee SS; Ko SH
    Nanoscale; 2012 Oct; 4(20):6408-14. PubMed ID: 22952107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvements in purification of silver nanowires by decantation and fabrication of flexible transparent electrodes. Application to capacitive touch sensors.
    Mayousse C; Celle C; Moreau E; Mainguet JF; Carella A; Simonato JP
    Nanotechnology; 2013 May; 24(21):215501. PubMed ID: 23619480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite.
    Amjadi M; Pichitpajongkit A; Lee S; Ryu S; Park I
    ACS Nano; 2014 May; 8(5):5154-63. PubMed ID: 24749972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Water-Based Silver-Nanowire Screen-Print Ink for the Fabrication of Stretchable Conductors and Wearable Thin-Film Transistors.
    Liang J; Tong K; Pei Q
    Adv Mater; 2016 Jul; 28(28):5986-96. PubMed ID: 27159406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smart Textile Based on 3D Stretchable Silver Nanowires/MXene Conductive Networks for Personal Healthcare and Thermal Management.
    Liu X; Miao J; Fan Q; Zhang W; Zuo X; Tian M; Zhu S; Zhang X; Qu L
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56607-56619. PubMed ID: 34786929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterned, Flexible, and Stretchable Silver Nanowire/Polymer Composite Films as Transparent Conductive Electrodes.
    Chen Y; Carmichael RS; Carmichael TB
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31210-31219. PubMed ID: 31373786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.