BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 26863382)

  • 1. Development of a Backbone Cyclic Peptide Library as Potential Antiparasitic Therapeutics Using Microwave Irradiation.
    Qvit N; Kornfeld OS
    J Vis Exp; 2016 Jan; (107):e53589. PubMed ID: 26863382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-activity relationship and metabolic stability studies of backbone cyclization and N-methylation of melanocortin peptides.
    Linde Y; Ovadia O; Safrai E; Xiang Z; Portillo FP; Shalev DE; Haskell-Luevano C; Hoffman A; Gilon C
    Biopolymers; 2008; 90(5):671-82. PubMed ID: 18655141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of backbone cyclization on PK/PD properties of bioactive peptide-peptoid hybrids: the melanocortin agonist paradigm.
    Ovadia O; Linde Y; Haskell-Luevano C; Dirain ML; Sheynis T; Jelinek R; Gilon C; Hoffman A
    Bioorg Med Chem; 2010 Jan; 18(2):580-9. PubMed ID: 20056544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic Peptides for Protein-Protein Interaction Targets: Applications to Human Disease.
    Rubin S; Qvit N
    Crit Rev Eukaryot Gene Expr; 2016; 26(3):199-221. PubMed ID: 27650985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave-assisted synthesis of cyclic phosphopeptide on solid support.
    Qvit N
    Chem Biol Drug Des; 2015 Mar; 85(3):300-5. PubMed ID: 25042903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of structural and conformation modifications, including backbone cyclization, of hydrophilic hexapeptides on their intestinal permeability and enzymatic stability.
    Hess S; Ovadia O; Shalev DE; Senderovich H; Qadri B; Yehezkel T; Salitra Y; Sheynis T; Jelinek R; Gilon C; Hoffman A
    J Med Chem; 2007 Nov; 50(24):6201-11. PubMed ID: 17983214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic peptides: backbone rigidification and capability of mimicking motifs at protein-protein interfaces.
    Huang H; Damjanovic J; Miao J; Lin YS
    Phys Chem Chem Phys; 2021 Jan; 23(1):607-616. PubMed ID: 33331371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global analysis of peptide cyclization efficiency.
    Thakkar A; Trinh TB; Pei D
    ACS Comb Sci; 2013 Feb; 15(2):120-9. PubMed ID: 23265659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monocyclic Peptides: Types, Synthesis and Applications.
    Khazaei-Poul Y; Farhadi S; Ghani S; Ahmadizad SA; Ranjbari J
    Curr Pharm Biotechnol; 2021; 22(1):123-135. PubMed ID: 31987019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting intracellular protein-protein interactions with cell-permeable cyclic peptides.
    Qian Z; Dougherty PG; Pei D
    Curr Opin Chem Biol; 2017 Jun; 38():80-86. PubMed ID: 28388463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing Oral Bioavailability of Cyclic RGD Hexa-peptides by the Lipophilic Prodrug Charge Masking Approach: Redirection of Peptide Intestinal Permeability from a Paracellular to Transcellular Pathway.
    Schumacher-Klinger A; Fanous J; Merzbach S; Weinmüller M; Reichart F; Räder AFB; Gitlin-Domagalska A; Gilon C; Kessler H; Hoffman A
    Mol Pharm; 2018 Aug; 15(8):3468-3477. PubMed ID: 29976060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tetrazine cyclized peptides for one-bead-one-compound library: Synthesis and sequencing.
    Das S; Nag A
    Methods Enzymol; 2024; 698():141-167. PubMed ID: 38886030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Opportunities and Challenges in Finding Cyclic Peptide Modulators of Protein-Protein Interactions.
    Duffy F; Maheshwari N; Buchete NV; Shields D
    Methods Mol Biol; 2019; 2001():73-95. PubMed ID: 31134568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of Protein Active Regions into Peptidomimetic Therapeutic Leads Using Backbone Cyclization and Cycloscan - How to Do it Yourself!
    Rubin SJS; Tal-Gan Y; Gilon C; Qvit N
    Curr Top Med Chem; 2018; 18(7):556-565. PubMed ID: 29773063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring a Structural Data Mining Approach to Design Linkers for Head-to-Tail Peptide Cyclization.
    Karami Y; Murail S; Giribaldi J; Lefranc B; Defontaine F; Lesouhaitier O; Leprince J; de Vries S; Tufféry P
    J Chem Inf Model; 2023 Oct; 63(20):6436-6450. PubMed ID: 37827517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multicyclic Peptides as Scaffolds for the Development of Tumor Targeting Agents.
    Loktev A; Haberkorn U; Mier W
    Curr Med Chem; 2017; 24(20):2141-2155. PubMed ID: 28302013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclization of a cytolytic amphipathic alpha-helical peptide and its diastereomer: effect on structure, interaction with model membranes, and biological function.
    Oren Z; Shai Y
    Biochemistry; 2000 May; 39(20):6103-14. PubMed ID: 10821683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histidine-iridium(III) coordination-based peptide luminogenic cyclization and cyclo-RGD peptides for cancer-cell targeting.
    Ma X; Jia J; Cao R; Wang X; Fei H
    J Am Chem Soc; 2014 Dec; 136(51):17734-7. PubMed ID: 25486120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and synthesis of backbone cyclic phosphorylated peptides: The IkappaB model.
    Qvit N; Hatzubai A; Shalev DE; Friedler A; Ben-Neriah Y; Gilon C
    Biopolymers; 2009 Feb; 91(2):157-68. PubMed ID: 19025995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Backbone cyclic peptide inhibitors of protein kinase B (PKB/Akt).
    Tal-Gan Y; Hurevich M; Klein S; Ben-Shimon A; Rosenthal D; Hazan C; Shalev DE; Niv MY; Levitzki A; Gilon C
    J Med Chem; 2011 Jul; 54(14):5154-64. PubMed ID: 21650457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.