These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26863615)

  • 1. Sustained Enhancement of Lateral Inhibitory Circuit Maintains Cross Modal Cortical Reorganization.
    Nakajima W; Jitsuki S; Sano A; Takahashi T
    PLoS One; 2016; 11(2):e0149068. PubMed ID: 26863615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serotonin mediates cross-modal reorganization of cortical circuits.
    Jitsuki S; Takemoto K; Kawasaki T; Tada H; Takahashi A; Becamel C; Sano A; Yuzaki M; Zukin RS; Ziff EB; Kessels HW; Takahashi T
    Neuron; 2011 Feb; 69(4):780-92. PubMed ID: 21338886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-modal regulation of synaptic AMPA receptors in primary sensory cortices by visual experience.
    Goel A; Jiang B; Xu LW; Song L; Kirkwood A; Lee HK
    Nat Neurosci; 2006 Aug; 9(8):1001-3. PubMed ID: 16819524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term depression induced by sensory deprivation during cortical map plasticity in vivo.
    Allen CB; Celikel T; Feldman DE
    Nat Neurosci; 2003 Mar; 6(3):291-9. PubMed ID: 12577061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serotonin as a mediator of cross-modal cortical reorganization.
    Takahashi T
    Commun Integr Biol; 2011 Jul; 4(4):459-61. PubMed ID: 21966571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct sensory requirements for unimodal and cross-modal homeostatic synaptic plasticity.
    He K; Petrus E; Gammon N; Lee HK
    J Neurosci; 2012 Jun; 32(25):8469-74. PubMed ID: 22723686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic signal imaging of deprivation-induced contraction of whisker representations in rat somatosensory cortex.
    Drew PJ; Feldman DE
    Cereb Cortex; 2009 Feb; 19(2):331-48. PubMed ID: 18515797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of electrical stimulation of dorsal raphe nucleus on neuronal response properties of barrel cortex layer IV neurons following long-term sensory deprivation.
    Sheikhkanloui-Milan H; Sheibani V; Afarinesh M; Esmaeili-Mahani S; Shamsizadeh A; Sepehri G
    Neurosci Bull; 2010 Oct; 26(5):388-94. PubMed ID: 20882065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensory deprivation without competition yields modest alterations of short-term synaptic dynamics.
    Finnerty GT; Connors BW
    Proc Natl Acad Sci U S A; 2000 Nov; 97(23):12864-8. PubMed ID: 11058162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensory experience alters cortical connectivity and synaptic function site specifically.
    Cheetham CE; Hammond MS; Edwards CE; Finnerty GT
    J Neurosci; 2007 Mar; 27(13):3456-65. PubMed ID: 17392462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microglia enable cross-modal plasticity by removing inhibitory synapses.
    Hashimoto A; Kawamura N; Tarusawa E; Takeda I; Aoyama Y; Ohno N; Inoue M; Kagamiuchi M; Kato D; Matsumoto M; Hasegawa Y; Nabekura J; Schaefer A; Moorhouse AJ; Yagi T; Wake H
    Cell Rep; 2023 May; 42(5):112383. PubMed ID: 37086724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation.
    Heynen AJ; Yoon BJ; Liu CH; Chung HJ; Huganir RL; Bear MF
    Nat Neurosci; 2003 Aug; 6(8):854-62. PubMed ID: 12886226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interhemispheric plasticity is mediated by maximal potentiation of callosal inputs.
    Petrus E; Saar G; Ma Z; Dodd S; Isaac JTR; Koretsky AP
    Proc Natl Acad Sci U S A; 2019 Mar; 116(13):6391-6396. PubMed ID: 30846552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Somatosensory cross-modal plasticity in the superior colliculus of visually deafferented rats.
    Mundiñano IC; Martínez-Millán L
    Neuroscience; 2010 Feb; 165(4):1457-70. PubMed ID: 19932888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whisker experience-dependent mGluR signaling maintains synaptic strength in the mouse adolescent cortex.
    Kubota J; Mikami Y; Kanemaru K; Sekiya H; Okubo Y; Iino M
    Eur J Neurosci; 2016 Aug; 44(3):2004-14. PubMed ID: 27225340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental AMPA receptor subunit specificity during experience-driven synaptic plasticity in the rat barrel cortex.
    Miyazaki T; Kunii M; Tada H; Sano A; Kuroiwa Y; Goto T; Malinow R; Takahashi T
    Brain Res; 2012 Jan; 1435():1-7. PubMed ID: 22197698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preserved excitatory-inhibitory balance of cortical synaptic inputs following deprived eye stimulation after a saturating period of monocular deprivation in rats.
    Iurilli G; Olcese U; Medini P
    PLoS One; 2013; 8(12):e82044. PubMed ID: 24349181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale plasticity in barrel cortex following repeated whisker trimming in young adult hamsters.
    Maier DL; Grieb GM; Stelzner DJ; McCasland JS
    Exp Neurol; 2003 Dec; 184(2):737-45. PubMed ID: 14769365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in mouse barrel synapses consequent to sensory deprivation from birth.
    Sadaka Y; Weinfeld E; Lev DL; White EL
    J Comp Neurol; 2003 Feb; 457(1):75-86. PubMed ID: 12541326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y
    Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.