These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 26863678)

  • 1. An Adaptable Continuous Restricted Boltzmann Machine in VLSI for Fusing the Sensory Data of an Electronic Nose.
    Wang JH; Tang CT; Chen H
    IEEE Trans Neural Netw Learn Syst; 2017 Apr; 28(4):961-974. PubMed ID: 26863678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous-valued probabilistic behavior in a VLSI generative model.
    Chen H; Fleury PC; Murray AF
    IEEE Trans Neural Netw; 2006 May; 17(3):755-70. PubMed ID: 16722178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive, integrated sensor processing to compensate for drift and uncertainty: a stochastic 'neural' approach.
    Tang TB; Chen H; Murray AF
    IEE Proc Nanobiotechnol; 2004 Feb; 151(1):28-34. PubMed ID: 16475840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fully integrated nose-on-a-chip for rapid diagnosis of ventilator-associated pneumonia.
    Chiu SW; Wang JH; Chang KH; Chang TH; Wang CM; Chang CL; Tang CT; Chen CF; Shih CH; Kuo HW; Wang LC; Chen H; Hsieh CC; Chang MF; Liu YW; Chen TJ; Yang CH; Chiueh H; Shyu JM; Tang KT
    IEEE Trans Biomed Circuits Syst; 2014 Dec; 8(6):765-78. PubMed ID: 25576573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward a general-purpose analog VLSI neural network with on-chip learning.
    Montalvo AJ; Gyurcsik RS; Paulos JJ
    IEEE Trans Neural Netw; 1997; 8(2):413-23. PubMed ID: 18255643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A neural network learning algorithm tailored for VLSI implementation.
    Hollis PW; Paulos JJ
    IEEE Trans Neural Netw; 1994; 5(5):784-91. PubMed ID: 18267851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion network architectures for implementation of Gibbs samplers with applications to assignment problems.
    Ting PY; Iltis RA
    IEEE Trans Neural Netw; 1994; 5(4):622-38. PubMed ID: 18267835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A low-power electronic nose signal-processing chip for a portable artificial olfaction system.
    Kea-Tiong Tang ; Shih-Wen Chiu ; Meng-Fan Chang ; Chih-Cheng Hsieh ; Jyuo-Min Shyu
    IEEE Trans Biomed Circuits Syst; 2011 Aug; 5(4):380-90. PubMed ID: 23851952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analog VLSI recurrent neural network learning a continuous-time trajectory.
    Cauwenberghs G
    IEEE Trans Neural Netw; 1996; 7(2):346-61. PubMed ID: 18255589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of metal oxide-based electronic nose and mass spectrometry-based electronic nose for the prediction of red wine spoilage.
    Berna AZ; Trowell S; Cynkar W; Cozzolino D
    J Agric Food Chem; 2008 May; 56(9):3238-44. PubMed ID: 18412363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of an electronic nose to diagnose bacterial sinusitis.
    Thaler ER; Hanson CW
    Am J Rhinol; 2006; 20(2):170-2. PubMed ID: 16686381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Digital Liquid State Machine With Biologically Inspired Learning and Its Application to Speech Recognition.
    Zhang Y; Li P; Jin Y; Choe Y
    IEEE Trans Neural Netw Learn Syst; 2015 Nov; 26(11):2635-49. PubMed ID: 25643415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach.
    Jian Y; Huang D; Yan J; Lu K; Huang Y; Wen T; Zeng T; Zhong S; Xie Q
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28629202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis and compensation of the effects of analog VLSI arithmetic on the LMS algorithm.
    Carvajal G; Figueroa M; Sbarbaro D; Valenzuela W
    IEEE Trans Neural Netw; 2011 Jul; 22(7):1046-60. PubMed ID: 21622073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A low-power VLSI arrhythmia classifier.
    Leong PW; Jabri MA
    IEEE Trans Neural Netw; 1995; 6(6):1435-45. PubMed ID: 18263436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive WTA with an analog VLSI neuromorphic learning chip.
    Häfliger P
    IEEE Trans Neural Netw; 2007 Mar; 18(2):551-72. PubMed ID: 17385639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and implementation of multipattern generators in analog VLSI.
    Kier RJ; Ames JC; Beer RD; Harrison RR
    IEEE Trans Neural Netw; 2006 Jul; 17(4):1025-1038. PubMed ID: 16856664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of the MOOSY4 eNose IoT for Sulphur-Based VOC Water Pollution Detection.
    Climent E; Pelegri-Sebastia J; Sogorb T; Talens JB; Chilo J
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28825645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A miniature electronic nose system based on an MWNT-polymer microsensor array and a low-power signal-processing chip.
    Chiu SW; Wu HC; Chou TI; Chen H; Tang KT
    Anal Bioanal Chem; 2014 Jun; 406(16):3985-94. PubMed ID: 24385138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A neuromorphic VLSI device for implementing 2-D selective attention systems.
    Indiveri G
    IEEE Trans Neural Netw; 2001; 12(6):1455-63. PubMed ID: 18249973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.