BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 26864170)

  • 1. Co-functionalized organic/inorganic hybrid ZnO nanorods as electron transporting layers for inverted organic solar cells.
    Ambade SB; Ambade RB; Eom SH; Baek MJ; Bagde SS; Mane RS; Lee SH
    Nanoscale; 2016 Mar; 8(9):5024-36. PubMed ID: 26864170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial Engineering Importance of Bilayered ZnO Cathode Buffer on the Photovoltaic Performance of Inverted Organic Solar Cells.
    Ambade RB; Ambade SB; Mane RS; Lee SH
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):7951-60. PubMed ID: 25804557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Temperature Solution-Processed Thiophene-Sulfur-Doped Planar ZnO Nanorods as Electron-Transporting Layers for Enhanced Performance of Organic Solar Cells.
    Ambade SB; Ambade RB; Bagde SS; Eom SH; Mane RS; Shin WS; Lee SH
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3831-3841. PubMed ID: 28029030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Work-Function and Surface Energy Tunable Cyanoacrylic Acid Small-Molecule Derivative Interlayer on Planar ZnO Nanorods for Improved Organic Photovoltaic Performance.
    Ambade SB; Ambade RB; Bagde SS; Lee SH
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35270-35280. PubMed ID: 27976842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of interfacial modifiers in hybrid solar cells: inorganic/polymer bilayer vs inorganic/polymer:fullerene bulk heterojunction.
    Eom SH; Baek MJ; Park H; Yan L; Liu S; You W; Lee SH
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):803-10. PubMed ID: 24351036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of an Electron Transport Layer to Enhance the Power Conversion Efficiency of Flexible Inverted Organic Solar Cells.
    Lee KH; Kumar B; Park HJ; Kim SW
    Nanoscale Res Lett; 2010 Aug; 5(12):1908-12. PubMed ID: 21170411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution-processed zinc oxide/polyethylenimine nanocomposites as tunable electron transport layers for highly efficient bulk heterojunction polymer solar cells.
    Chen HC; Lin SW; Jiang JM; Su YW; Wei KH
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6273-81. PubMed ID: 25697544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of highly transparent seedless ZnO nanorods engineered for inverted polymer solar cells.
    Ambade SB; Ambade RB; Lee W; Mane RS; Yoon SC; Lee SH
    Nanoscale; 2014 Oct; 6(20):12130-41. PubMed ID: 25201162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance enhancement in inverted solar cells by interfacial modification of ZnO nanoparticle buffer layer.
    Ambade SB; Ambade RB; Kim S; Park H; Yoo DJ; Leel SH
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8561-6. PubMed ID: 25958563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Doping ZnO with Water/Alcohol-Soluble Small Molecules as Electron Transport Layers for Inverted Polymer Solar Cells.
    Liu C; Zhang L; Xiao L; Peng X; Cao Y
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):28225-28230. PubMed ID: 27696803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulation of Zinc Oxide with Zirconium Doping for Efficient Inverted Organic Solar Cells.
    Song X; Liu G; Gao W; Di Y; Yang Y; Li F; Zhou S; Zhang J
    Small; 2021 Feb; 17(7):e2006387. PubMed ID: 33475246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3-Dimensional ZnO/CdS nanocomposite with high mobility as an efficient electron transport layer for inverted polymer solar cells.
    Wang Y; Fu H; Wang Y; Tan L; Chen L; Chen Y
    Phys Chem Chem Phys; 2016 Apr; 18(17):12175-82. PubMed ID: 27074904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zwitterion Nondetergent Sulfobetaine-Modified SnO
    Tran VH; Kim SK; Lee SH
    ACS Omega; 2019 Nov; 4(21):19225-19237. PubMed ID: 31763546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Air-stable efficient inverted polymer solar cells using solution-processed nanocrystalline ZnO interfacial layer.
    Tan MJ; Zhong S; Li J; Chen Z; Chen W
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):4696-701. PubMed ID: 23646864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun ZnO nanowire plantations in the electron transport layer for high-efficiency inverted organic solar cells.
    Elumalai NK; Jin TM; Chellappan V; Jose R; Palaniswamy SK; Jayaraman S; Raut HK; Ramakrishna S
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9396-404. PubMed ID: 24028573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of the organic/inorganic interface on the organic-inorganic hybrid solar cells.
    Ichikawa T; Shiratori S
    J Nanosci Nanotechnol; 2012 May; 12(5):3725-31. PubMed ID: 22852300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of cation and anion dopant incorporated into a ZnO electron transporting layer for polymer bulk heterojunction solar cells.
    Kim S; Jeong J; Hoang QV; Han JW; Prasetio A; Jahandar M; Kim YH; Cho S; Chan Lim D
    RSC Adv; 2019 Nov; 9(65):37714-37723. PubMed ID: 35541802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inverted organic solar cells with ZnO nanowalls prepared using wet chemical etching in a KOH solution.
    Shin KS; Park HJ; Kumar B; Kim KH; Kim SH; Kim SW
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1234-7. PubMed ID: 22629928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient inverted polymer solar cells by using solution processed MgO/ZnO composite interfacial layers.
    Huang S; Kang B; Duan L; Zhang D
    J Colloid Interface Sci; 2021 Feb; 583():178-187. PubMed ID: 33002690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution processed ZnO hybrid nanocomposite with tailored work function for improved electron transport layer in organic photovoltaic devices.
    Lee YJ; Wang J; Cheng SR; Hsu JW
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):9128-33. PubMed ID: 23981136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.