These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 26864597)
1. Activity Variation of Phanerochaete chrysosporium under Nanosilver Exposure by Controlling of Different Sulfide Sources. Guo Z; Chen G; Liu L; Zeng G; Huang Z; Chen A; Hu L Sci Rep; 2016 Feb; 6():20813. PubMed ID: 26864597 [TBL] [Abstract][Full Text] [Related]
2. Alleviation of heavy metal and silver nanoparticle toxicity and enhancement of their removal by hydrogen sulfide in Phanerochaete chrysosporium. Huang Z; He K; Song Z; Zeng G; Chen A; Yuan L; Li H; Chen G Chemosphere; 2019 Jun; 224():554-561. PubMed ID: 30844588 [TBL] [Abstract][Full Text] [Related]
3. Toxicity mechanisms and synergies of silver nanoparticles in 2,4-dichlorophenol degradation by Phanerochaete chrysosporium. Huang Z; Chen G; Zeng G; Guo Z; He K; Hu L; Wu J; Zhang L; Zhu Y; Song Z J Hazard Mater; 2017 Jan; 321():37-46. PubMed ID: 27607931 [TBL] [Abstract][Full Text] [Related]
4. Transport, fate, and stimulating impact of silver nanoparticles on the removal of Cd(II) by Phanerochaete chrysosporium in aqueous solutions. Zuo Y; Chen G; Zeng G; Li Z; Yan M; Chen A; Guo Z; Huang Z; Tan Q J Hazard Mater; 2015 Mar; 285():236-44. PubMed ID: 25497315 [TBL] [Abstract][Full Text] [Related]
5. Differential behaviors of silver nanoparticles and silver ions towards cysteine: Bioremediation and toxicity to Phanerochaete chrysosporium. Huang Z; Zeng Z; Chen A; Zeng G; Xiao R; Xu P; He K; Song Z; Hu L; Peng M; Huang T; Chen G Chemosphere; 2018 Jul; 203():199-208. PubMed ID: 29614413 [TBL] [Abstract][Full Text] [Related]
6. Antimicrobial efficacy and mechanisms of silver nanoparticles against Phanerochaete chrysosporium in the presence of common electrolytes and humic acid. Huang Z; Zeng Z; Song Z; Chen A; Zeng G; Xiao R; He K; Yuan L; Li H; Chen G J Hazard Mater; 2020 Feb; 383():121153. PubMed ID: 31518805 [TBL] [Abstract][Full Text] [Related]
7. Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Xiu ZM; Ma J; Alvarez PJ Environ Sci Technol; 2011 Oct; 45(20):9003-8. PubMed ID: 21950450 [TBL] [Abstract][Full Text] [Related]
8. Silver ion-enhanced particle-specific cytotoxicity of silver nanoparticles and effect on the production of extracellular secretions of Phanerochaete chrysosporium. Huang Z; Xu P; Chen G; Zeng G; Chen A; Song Z; He K; Yuan L; Li H; Hu L Chemosphere; 2018 Apr; 196():575-584. PubMed ID: 29331621 [TBL] [Abstract][Full Text] [Related]
9. Antioxidative response of Phanerochaete chrysosporium against silver nanoparticle-induced toxicity and its potential mechanism. Huang Z; He K; Song Z; Zeng G; Chen A; Yuan L; Li H; Hu L; Guo Z; Chen G Chemosphere; 2018 Nov; 211():573-583. PubMed ID: 30092538 [TBL] [Abstract][Full Text] [Related]
10. Surface ligand controls silver ion release of nanosilver and its antibacterial activity against Long YM; Hu LG; Yan XT; Zhao XC; Zhou QF; Cai Y; Jiang GB Int J Nanomedicine; 2017; 12():3193-3206. PubMed ID: 28458540 [TBL] [Abstract][Full Text] [Related]
11. Characterization of nanosilver coated cotton fabrics and evaluation of its antibacterial efficacy. El-Rafie MH; Ahmed HB; Zahran MK Carbohydr Polym; 2014 Jul; 107():174-81. PubMed ID: 24702933 [TBL] [Abstract][Full Text] [Related]
12. Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Levard C; Mitra S; Yang T; Jew AD; Badireddy AR; Lowry GV; Brown GE Environ Sci Technol; 2013 Jun; 47(11):5738-45. PubMed ID: 23641814 [TBL] [Abstract][Full Text] [Related]
13. Antibacterial activity of nanosilver ions and particles. Sotiriou GA; Pratsinis SE Environ Sci Technol; 2010 Jul; 44(14):5649-54. PubMed ID: 20583805 [TBL] [Abstract][Full Text] [Related]
14. Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria viz. Escherichia coli and Pseudomonas aeruginosa. Ramalingam B; Parandhaman T; Das SK ACS Appl Mater Interfaces; 2016 Feb; 8(7):4963-76. PubMed ID: 26829373 [TBL] [Abstract][Full Text] [Related]
15. Are silver nanoparticles always toxic in the presence of environmental anions? Guo Z; Chen G; Zeng G; Yan M; Huang Z; Jiang L; Peng C; Wang J; Xiao Z Chemosphere; 2017 Mar; 171():318-323. PubMed ID: 28027476 [TBL] [Abstract][Full Text] [Related]
16. The effect of natural water conditions on the anti-bacterial performance and stability of silver nanoparticles capped with different polymers. Zhang H; Smith JA; Oyanedel-Craver V Water Res; 2012 Mar; 46(3):691-9. PubMed ID: 22169660 [TBL] [Abstract][Full Text] [Related]
17. Amino acid-dependent transformations of citrate-coated silver nanoparticles: impact on morphology, stability and toxicity. Shi J; Sun X; Zou X; Zhang H Toxicol Lett; 2014 Aug; 229(1):17-24. PubMed ID: 24910988 [TBL] [Abstract][Full Text] [Related]
18. Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157:H7. Xu H; Qu F; Xu H; Lai W; Andrew Wang Y; Aguilar ZP; Wei H Biometals; 2012 Feb; 25(1):45-53. PubMed ID: 21805351 [TBL] [Abstract][Full Text] [Related]
19. Transformations of citrate and Tween coated silver nanoparticles reacted with Na₂S. Baalousha M; Arkill KP; Romer I; Palmer RE; Lead JR Sci Total Environ; 2015 Jan; 502():344-53. PubMed ID: 25262296 [TBL] [Abstract][Full Text] [Related]
20. Size and Aging Effects on Antimicrobial Efficiency of Silver Nanoparticles Coated on Polyamide Fabrics Activated by Atmospheric DBD Plasma. Zille A; Fernandes MM; Francesko A; Tzanov T; Fernandes M; Oliveira FR; Almeida L; Amorim T; Carneiro N; Esteves MF; Souto AP ACS Appl Mater Interfaces; 2015 Jul; 7(25):13731-44. PubMed ID: 26057400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]