These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 26864765)

  • 41. Optimality of sparse olfactory representations is not affected by network plasticity.
    Assisi C; Stopfer M; Bazhenov M
    PLoS Comput Biol; 2020 Feb; 16(2):e1007461. PubMed ID: 32012160
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neural Encoding of Odors during Active Sampling and in Turbulent Plumes.
    Huston SJ; Stopfer M; Cassenaer S; Aldworth ZN; Laurent G
    Neuron; 2015 Oct; 88(2):403-18. PubMed ID: 26456047
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coding of odor stimulus features among secondary olfactory structures.
    Xia CZ; Adjei S; Wesson DW
    J Neurophysiol; 2015 Jul; 114(1):736-45. PubMed ID: 26041832
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Higher-order olfactory neurons in the lateral horn support odor valence and odor identity coding in
    Das Chakraborty S; Chang H; Hansson BS; Sachse S
    Elife; 2022 May; 11():. PubMed ID: 35621267
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Responses of cockroach antennal lobe projection neurons to pulsatile olfactory stimuli.
    Lemon WC; Getz WM
    Ann N Y Acad Sci; 1998 Nov; 855():517-20. PubMed ID: 10049232
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A single GABAergic neuron mediates feedback of odor-evoked signals in the mushroom body of larval Drosophila.
    Masuda-Nakagawa LM; Ito K; Awasaki T; O'Kane CJ
    Front Neural Circuits; 2014; 8():35. PubMed ID: 24782716
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Learning modifies odor mixture processing to improve detection of relevant components.
    Chen JY; Marachlian E; Assisi C; Huerta R; Smith BH; Locatelli F; Bazhenov M
    J Neurosci; 2015 Jan; 35(1):179-97. PubMed ID: 25568113
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multi-unit recordings reveal context-dependent modulation of synchrony in odor-specific neural ensembles.
    Christensen TA; Pawlowski VM; Lei H; Hildebrand JG
    Nat Neurosci; 2000 Sep; 3(9):927-31. PubMed ID: 10966624
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Temporally specific engagement of distinct neuronal circuits regulating olfactory habituation in
    Semelidou O; Acevedo SF; Skoulakis EM
    Elife; 2018 Dec; 7():. PubMed ID: 30576281
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Learning about natural variation of odor mixtures enhances categorization in early olfactory processing.
    Locatelli FF; Fernandez PC; Smith BH
    J Exp Biol; 2016 Sep; 219(Pt 17):2752-62. PubMed ID: 27412003
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Temporal features of spike trains in the moth antennal lobe revealed by a comparative time-frequency analysis.
    Capurro A; Baroni F; Kuebler LS; Kárpáti Z; Dekker T; Lei H; Hansson BS; Pearce TC; Olsson SB
    PLoS One; 2014; 9(1):e84037. PubMed ID: 24465391
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic contrast enhancement and flexible odor codes.
    Nizampatnam S; Saha D; Chandak R; Raman B
    Nat Commun; 2018 Aug; 9(1):3062. PubMed ID: 30076307
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Temporally diverse firing patterns in olfactory receptor neurons underlie spatiotemporal neural codes for odors.
    Raman B; Joseph J; Tang J; Stopfer M
    J Neurosci; 2010 Feb; 30(6):1994-2006. PubMed ID: 20147528
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Morphology and physiology of the olfactory system of blood-feeding insects.
    Guidobaldi F; May-Concha IJ; Guerenstein PG
    J Physiol Paris; 2014; 108(2-3):96-111. PubMed ID: 24836537
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons.
    Mazor O; Laurent G
    Neuron; 2005 Nov; 48(4):661-73. PubMed ID: 16301181
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Odor discrimination in single turtle olfactory receptor neuron.
    Kashiwayanagi M; Kurihara K
    Neurosci Lett; 1994 Apr; 170(2):233-6. PubMed ID: 8058195
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A model of non-elemental olfactory learning in Drosophila.
    Wessnitzer J; Young JM; Armstrong JD; Webb B
    J Comput Neurosci; 2012 Apr; 32(2):197-212. PubMed ID: 21698405
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The GABA system regulates the sparse coding of odors in the mushroom bodies of Drosophila.
    Lei Z; Chen K; Li H; Liu H; Guo A
    Biochem Biophys Res Commun; 2013 Jun; 436(1):35-40. PubMed ID: 23707718
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Encoding and decoding of overlapping odor sequences.
    Broome BM; Jayaraman V; Laurent G
    Neuron; 2006 Aug; 51(4):467-82. PubMed ID: 16908412
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plasticity-driven individualization of olfactory coding in mushroom body output neurons.
    Hige T; Aso Y; Rubin GM; Turner GC
    Nature; 2015 Oct; 526(7572):258-62. PubMed ID: 26416731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.