BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 26864858)

  • 1. Multimodal Dispersion of Nanoparticles: A Comprehensive Evaluation of Size Distribution with 9 Size Measurement Methods.
    Varenne F; Makky A; Gaucher-Delmas M; Violleau F; Vauthier C
    Pharm Res; 2016 May; 33(5):1220-34. PubMed ID: 26864858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring Particle Size Distribution by Asymmetric Flow Field Flow Fractionation: A Powerful Method for the Preclinical Characterization of Lipid-Based Nanoparticles.
    Caputo F; Arnould A; Bacia M; Ling WL; Rustique E; Texier I; Mello AP; Couffin AC
    Mol Pharm; 2019 Feb; 16(2):756-767. PubMed ID: 30604620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity.
    Caputo F; Clogston J; Calzolai L; Rösslein M; Prina-Mello A
    J Control Release; 2019 Apr; 299():31-43. PubMed ID: 30797868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rationalizing nanomaterial sizes measured by atomic force microscopy, flow field-flow fractionation, and dynamic light scattering: sample preparation, polydispersity, and particle structure.
    Baalousha M; Lead JR
    Environ Sci Technol; 2012 Jun; 46(11):6134-42. PubMed ID: 22594655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of dextran particle size: How frit-inlet asymmetrical flow field-flow fractionation (FI-AF4) coupled online with dynamic light scattering (DLS) leads to enhanced size distribution.
    Ramirez LMF; Rihouey C; Chaubet F; Le Cerf D; Picton L
    J Chromatogr A; 2021 Sep; 1653():462404. PubMed ID: 34348206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring particle concentration of multimodal synthetic reference materials and extracellular vesicles with orthogonal techniques: Who is up to the challenge?
    Vogel R; Savage J; Muzard J; Camera GD; Vella G; Law A; Marchioni M; Mehn D; Geiss O; Peacock B; Aubert D; Calzolai L; Caputo F; Prina-Mello A
    J Extracell Vesicles; 2021 Jan; 10(3):e12052. PubMed ID: 33473263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions.
    Anderson W; Kozak D; Coleman VA; Jämting ÅK; Trau M
    J Colloid Interface Sci; 2013 Sep; 405():322-30. PubMed ID: 23759321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization Challenges of Self-Assembled Polymer-SPIONs Nanoparticles: Benefits of Orthogonal Methods.
    Marques C; Maurizi L; Borchard G; Jordan O
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetrical flow field-flow fractionation for human serum albumin based nanoparticle characterisation and a deeper insight into particle formation processes.
    John C; Langer K
    J Chromatogr A; 2014 Jun; 1346():97-106. PubMed ID: 24800970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size and ζ-Potential Measurement of Silica Nanoparticles in Serum Using Tunable Resistive Pulse Sensing.
    Sikora A; Shard AG; Minelli C
    Langmuir; 2016 Mar; 32(9):2216-24. PubMed ID: 26869024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi elastic light scattering for characterization of poly(ethyleneglycol-b-ɛ-caprolactone) block copolymer self-assemblies used as drug carriers for photodynamic therapy.
    Ehrhart J; Mingotaud AF; Violleau F
    J Chromatogr A; 2011 Jul; 1218(27):4249-56. PubMed ID: 21300359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle Sizing of Nanoparticle Adjuvant Formulations by Dynamic Light Scattering (DLS) and Nanoparticle Tracking Analysis (NTA).
    Chan MY; Dowling QM; Sivananthan SJ; Kramer RM
    Methods Mol Biol; 2017; 1494():239-252. PubMed ID: 27718198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of Tunable Resistive Pulse Sensing (TRPS) Technology for Particle Size Distribution in Vaccine Formulations - A Comparative Study with Dynamic Light Scattering.
    Misra R; Fung G; Sharma S; Hu J; Kirkitadze M
    Pharm Res; 2024 May; 41(5):1021-1029. PubMed ID: 38649535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability and drug release studies of an antimycotic nanomedicine using HPLC, dynamic light scattering and atomic force microscopy.
    Watanabe A; Takagi M; Murata S; Kato M
    J Pharm Biomed Anal; 2018 Jan; 148():149-155. PubMed ID: 29028561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biophysical analysis of lipidic nanoparticles.
    Rozo AJ; Cox MH; Devitt A; Rothnie AJ; Goddard AD
    Methods; 2020 Aug; 180():45-55. PubMed ID: 32387313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of silver nanoparticle products using asymmetric flow field flow fractionation with a multidetector approach--a comparison to transmission electron microscopy and batch dynamic light scattering.
    Hagendorfer H; Kaegi R; Parlinska M; Sinnet B; Ludwig C; Ulrich A
    Anal Chem; 2012 Mar; 84(6):2678-85. PubMed ID: 22304567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging and size measurement of nanoparticles in aqueous medium by use of atomic force microscopy.
    Takechi-Haraya Y; Goda Y; Sakai-Kato K
    Anal Bioanal Chem; 2018 Feb; 410(5):1525-1531. PubMed ID: 29256078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physicochemical characterization and quantification of nanoplastics: applicability, limitations and complementarity of batch and fractionation methods.
    Huber MJ; Ivleva NP; Booth AM; Beer I; Bianchi I; Drexel R; Geiss O; Mehn D; Meier F; Molska A; Parot J; Sørensen L; Vella G; Prina-Mello A; Vogel R; Caputo F
    Anal Bioanal Chem; 2023 Jun; 415(15):3007-3031. PubMed ID: 37106123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of crystalline drug nanoparticles using atomic force microscopy and complementary techniques.
    Shi HG; Farber L; Michaels JN; Dickey A; Thompson KC; Shelukar SD; Hurter PN; Reynolds SD; Kaufman MJ
    Pharm Res; 2003 Mar; 20(3):479-84. PubMed ID: 12669972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow field-flow fractionation for the analysis of nanoparticles used in drug delivery.
    Zattoni A; Roda B; Borghi F; Marassi V; Reschiglian P
    J Pharm Biomed Anal; 2014 Jan; 87():53-61. PubMed ID: 24012480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.