BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 26865019)

  • 1. Mechanisms and functions of GABA co-release.
    Tritsch NX; Granger AJ; Sabatini BL
    Nat Rev Neurosci; 2016 Mar; 17(3):139-45. PubMed ID: 26865019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional implications of neurotransmitter co-release: glutamate and GABA share the load.
    Seal RP; Edwards RH
    Curr Opin Pharmacol; 2006 Feb; 6(1):114-9. PubMed ID: 16359920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Relevance of AgRP Neuron-Derived GABA Inputs to POMC Neurons Differs for Spontaneous and Evoked Release.
    Rau AR; Hentges ST
    J Neurosci; 2017 Aug; 37(31):7362-7372. PubMed ID: 28667175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamate transporter EAAT4 in Purkinje cells controls intersynaptic diffusion of climbing fiber transmitter mediating inhibition of GABA release from interneurons.
    Satake S; Song SY; Konishi S; Imoto K
    Eur J Neurosci; 2010 Dec; 32(11):1843-53. PubMed ID: 21070388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presynaptic control of inhibitory neurotransmitter content in VIAAT containing synaptic vesicles.
    Aubrey KR
    Neurochem Int; 2016 Sep; 98():94-102. PubMed ID: 27296116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depolarization by K+ and glutamate activates different neurotransmitter release mechanisms in GABAergic neurons: vesicular versus non-vesicular release of GABA.
    Belhage B; Hansen GH; Schousboe A
    Neuroscience; 1993 Jun; 54(4):1019-34. PubMed ID: 8101980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique pH dynamics in GABAergic synaptic vesicles illuminates the mechanism and kinetics of GABA loading.
    Egashira Y; Takase M; Watanabe S; Ishida J; Fukamizu A; Kaneko R; Yanagawa Y; Takamori S
    Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10702-7. PubMed ID: 27601664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptotagmin2 (Syt2) Drives Fast Release Redundantly with Syt1 at the Output Synapses of Parvalbumin-Expressing Inhibitory Neurons.
    Bouhours B; Gjoni E; Kochubey O; Schneggenburger R
    J Neurosci; 2017 Apr; 37(17):4604-4617. PubMed ID: 28363983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role and the mechanism of gamma-aminobutyric acid during central nervous system development.
    Li K; Xu E
    Neurosci Bull; 2008 Jun; 24(3):195-200. PubMed ID: 18500393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The multilingual nature of dopamine neurons.
    Trudeau LE; Hnasko TS; Wallén-Mackenzie A; Morales M; Rayport S; Sulzer D
    Prog Brain Res; 2014; 211():141-64. PubMed ID: 24968779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depolarization induced neuronal release of taurine in relation to synaptic transmission: comparison with GABA and glutamate.
    Schousboe A; Sánchez Olea R; Pasantes-Morales H
    Prog Clin Biol Res; 1990; 351():289-97. PubMed ID: 2173001
    [No Abstract]   [Full Text] [Related]  

  • 12. Distinct modes of dopamine and GABA release in a dual transmitter neuron.
    Borisovska M; Bensen AL; Chong G; Westbrook GL
    J Neurosci; 2013 Jan; 33(5):1790-6. PubMed ID: 23365218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calibration of neurotransmitter release from neural cells for therapeutic implants.
    Jedlicka SS; Dadarlat M; Hassell T; Lin Y; Young A; Zhang M; Irazoqui P; Rickus JL
    Int J Neural Syst; 2009 Jun; 19(3):197-212. PubMed ID: 19575508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On cotransmission & neurotransmitter phenotype plasticity.
    Trudeau LE; Gutiérrez R
    Mol Interv; 2007 Jun; 7(3):138-46. PubMed ID: 17609520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opioids block long-term potentiation of inhibitory synapses.
    Nugent FS; Penick EC; Kauer JA
    Nature; 2007 Apr; 446(7139):1086-90. PubMed ID: 17460674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The probability of neurotransmitter release: variability and feedback control at single synapses.
    Branco T; Staras K
    Nat Rev Neurosci; 2009 May; 10(5):373-83. PubMed ID: 19377502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How to build a central synapse: clues from cell culture.
    Craig AM; Graf ER; Linhoff MW
    Trends Neurosci; 2006 Jan; 29(1):8-20. PubMed ID: 16337695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-transmitter neurons: functional implications of co-release and co-transmission.
    Vaaga CE; Borisovska M; Westbrook GL
    Curr Opin Neurobiol; 2014 Dec; 29():25-32. PubMed ID: 24816154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switching of the transmitters that mediate hindbrain correlated activity in the chick embryo.
    Mochida H; Sato K; Momose-Sato Y
    Eur J Neurosci; 2009 Jan; 29(1):14-30. PubMed ID: 19087161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microglia and GABA: Diverse functions of microglia beyond GABA-receiving cells.
    Andoh M; Koyama R
    Neurosci Res; 2023 Feb; 187():52-57. PubMed ID: 36152917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.