These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 26865054)

  • 1. Deformation and internal stress in a red blood cell as it is driven through a slit by an incoming flow.
    Salehyar S; Zhu Q
    Soft Matter; 2016 Apr; 12(13):3156-64. PubMed ID: 26865054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of stiffness and volume on the transit time of an erythrocyte through a slit.
    Salehyar S; Zhu Q
    Biomech Model Mechanobiol; 2017 Jun; 16(3):921-931. PubMed ID: 27889852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cooperative role of membrane skeleton and bilayer in the mechanical behaviour of red blood cells.
    Svetina S; Kuzman D; Waugh RE; Ziherl P; Zeks B
    Bioelectrochemistry; 2004 May; 62(2):107-13. PubMed ID: 15039011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid bilayer and cytoskeletal interactions in a red blood cell.
    Peng Z; Li X; Pivkin IV; Dao M; Karniadakis GE; Suresh S
    Proc Natl Acad Sci U S A; 2013 Aug; 110(33):13356-61. PubMed ID: 23898181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin-label studies of erythrocyte deformability. IV. Relation of electron spin resonance spectral change with deformation and orientation of erythrocytes in shear flow.
    Noji S; Kon H; Taniguchi S
    Biophys J; 1984 Sep; 46(3):349-55. PubMed ID: 6091803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The deformation behavior of multiple red blood cells in a capillary vessel.
    Gong X; Sugiyama K; Takagi S; Matsumoto Y
    J Biomech Eng; 2009 Jul; 131(7):074504. PubMed ID: 19640140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
    Secomb TW; Styp-Rekowska B; Pries AR
    Ann Biomed Eng; 2007 May; 35(5):755-65. PubMed ID: 17380392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells.
    Dyrda A; Cytlak U; Ciuraszkiewicz A; Lipinska A; Cueff A; Bouyer G; Egée S; Bennekou P; Lew VL; Thomas SL
    PLoS One; 2010 Feb; 5(2):e9447. PubMed ID: 20195477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of erythrocytes in oscillatory shear flows: effects of S/V ratio.
    Zhu Q; Bi X
    Soft Matter; 2022 Feb; 18(5):964-974. PubMed ID: 35029271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microscopic investigation of erythrocyte deformation dynamics.
    Zhao R; Antaki JF; Naik T; Bachman TN; Kameneva MV; Wu ZJ
    Biorheology; 2006; 43(6):747-65. PubMed ID: 17148857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A possible physical mechanism of red blood cell vesiculation obtained by incubation at high pH.
    Iglic A; Hägerstrand H; Kralj-Iglic V; Bobrowska-Hägerstrand M
    J Biomech; 1998 Feb; 31(2):151-6. PubMed ID: 9593208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
    Korin N; Bransky A; Dinnar U
    J Biomech; 2007; 40(9):2088-95. PubMed ID: 17188279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deformability of human red blood cells exposed to a uniform shear stress as measured by a cyclically reversing shear flow generator.
    Watanabe N; Arakawa Y; Sou A; Kataoka H; Ohuchi K; Fujimoto T; Takatani S
    Physiol Meas; 2007 May; 28(5):531-45. PubMed ID: 17470986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospects for Human Erythrocyte Skeleton-Bilayer Dissociation during Splenic Flow.
    Zhu Q; Salehyar S; Cabrales P; Asaro RJ
    Biophys J; 2017 Aug; 113(4):900-912. PubMed ID: 28834726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of red blood cell deformation under fast shear flow for better estimation of hemolysis.
    Nakamura M; Bessho S; Wada S
    Int J Numer Method Biomed Eng; 2014 Jan; 30(1):42-54. PubMed ID: 23949912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K; Wada S; Liu H
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of a bilayer membrane coupled to a two-dimensional cytoskeleton: Scale transfers of membrane deformations.
    Okamoto R; Komura S; Fournier JB
    Phys Rev E; 2017 Jul; 96(1-1):012416. PubMed ID: 29347262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deformation of human red blood cells in extensional flow through a hyperbolic contraction.
    Faghih MM; Sharp MK
    Biomech Model Mechanobiol; 2020 Feb; 19(1):251-261. PubMed ID: 31388870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous Determination of Human Erythrocyte Deformability and Adhesion Energy: A Novel Approach Using a Microfluidic Chamber and the "Glass Effect".
    Londero CM; Riquelme BD
    Cell Biochem Biophys; 2021 Mar; 79(1):49-55. PubMed ID: 33159300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.