BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 26865422)

  • 41. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease.
    Babizhayev MA
    Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reactive Oxygen Species and Oxidative Stress in Obesity-Recent Findings and Empirical Approaches.
    McMurray F; Patten DA; Harper ME
    Obesity (Silver Spring); 2016 Nov; 24(11):2301-2310. PubMed ID: 27804267
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Redox control of platelet functions in physiology and pathophysiology.
    Pietraforte D; Vona R; Marchesi A; de Jacobis IT; Villani A; Del Principe D; Straface E
    Antioxid Redox Signal; 2014 Jul; 21(1):177-93. PubMed ID: 24597688
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A reversible near-infrared fluorescence probe for reactive oxygen species based on Te-rhodamine.
    Koide Y; Kawaguchi M; Urano Y; Hanaoka K; Komatsu T; Abo M; Terai T; Nagano T
    Chem Commun (Camb); 2012 Mar; 48(25):3091-3. PubMed ID: 22344329
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reactive Oxygen Species and the Aging Eye: Specific Role of Metabolically Active Mitochondria in Maintaining Lens Function and in the Initiation of the Oxidation-Induced Maturity Onset Cataract--A Novel Platform of Mitochondria-Targeted Antioxidants With Broad Therapeutic Potential for Redox Regulation and Detoxification of Oxidants in Eye Diseases.
    Babizhayev MA; Yegorov YE
    Am J Ther; 2016; 23(1):e98-117. PubMed ID: 21048433
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen.
    Leach JK; Van Tuyle G; Lin PS; Schmidt-Ullrich R; Mikkelsen RB
    Cancer Res; 2001 May; 61(10):3894-901. PubMed ID: 11358802
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioinspired Small-Molecule Tools for the Imaging of Redox Biology.
    Kaur A; New EJ
    Acc Chem Res; 2019 Mar; 52(3):623-632. PubMed ID: 30747522
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
    Korge P; Calmettes G; Weiss JN
    Biochim Biophys Acta; 2015; 1847(6-7):514-25. PubMed ID: 25701705
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mitochondria contribute to LPS-induced MAPK activation via uncoupling protein UCP2 in macrophages.
    Emre Y; Hurtaud C; Nübel T; Criscuolo F; Ricquier D; Cassard-Doulcier AM
    Biochem J; 2007 Mar; 402(2):271-8. PubMed ID: 17073824
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Changes of reactive oxygen and nitrogen species and mitochondrial functioning in human K562 and HL60 cells exposed to ionizing radiation.
    Saenko Y; Cieslar-Pobuda A; Skonieczna M; Rzeszowska-Wolny J
    Radiat Res; 2013 Oct; 180(4):360-6. PubMed ID: 24033192
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sustained accumulation of prelamin A and depletion of lamin A/C both cause oxidative stress and mitochondrial dysfunction but induce different cell fates.
    Sieprath T; Corne TD; Nooteboom M; Grootaert C; Rajkovic A; Buysschaert B; Robijns J; Broers JL; Ramaekers FC; Koopman WJ; Willems PH; De Vos WH
    Nucleus; 2015; 6(3):236-46. PubMed ID: 25996284
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Functional role of mitochondrial reactive oxygen species in physiology.
    Angelova PR; Abramov AY
    Free Radic Biol Med; 2016 Nov; 100():81-85. PubMed ID: 27296839
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reversibly monitoring oxidation and reduction events in living biological systems: Recent development of redox-responsive reversible NIR biosensors and their applications in in vitro/in vivo fluorescence imaging.
    Chu TS; Lü R; Liu BT
    Biosens Bioelectron; 2016 Dec; 86():643-655. PubMed ID: 27471155
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mitochondrial reactive oxygen species regulate adipocyte differentiation of mesenchymal stem cells in hematopoietic stress induced by arabinosylcytosine.
    Wang W; Zhang Y; Lu W; Liu K
    PLoS One; 2015; 10(3):e0120629. PubMed ID: 25768922
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks.
    Sandalio LM; Romero-Puertas MC
    Ann Bot; 2015 Sep; 116(4):475-85. PubMed ID: 26070643
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mitochondrial concept of leukemogenesis: key role of oxygen-peroxide effects.
    Lyu BN; Ismailov SB; Ismailov B; Lyu MB
    Theor Biol Med Model; 2008 Nov; 5():23. PubMed ID: 19014456
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Integrated High-Content Quantification of Intracellular ROS Levels and Mitochondrial Morphofunction.
    Sieprath T; Corne TD; Willems PH; Koopman WJ; De Vos WH
    Adv Anat Embryol Cell Biol; 2016; 219():149-77. PubMed ID: 27207366
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genetically encoded reactive oxygen species (ROS) and redox indicators.
    Pouvreau S
    Biotechnol J; 2014 Feb; 9(2):282-93. PubMed ID: 24497389
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy.
    Ni R; Cao T; Xiong S; Ma J; Fan GC; Lacefield JC; Lu Y; Le Tissier S; Peng T
    Free Radic Biol Med; 2016 Jan; 90():12-23. PubMed ID: 26577173
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-throughput screening of cellular redox sensors using modern redox proteomics approaches.
    Jiang J; Wang K; Nice EC; Zhang T; Huang C
    Expert Rev Proteomics; 2015; 12(5):543-55. PubMed ID: 26184698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.