These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 26865582)

  • 1. Laser-Induced Breakdown Spectroscopy (LIBS) for the Measurement of Spatial Structures and Fuel Distribution in Flames.
    Kotzagianni M; Kakkava E; Couris S
    Appl Spectrosc; 2016 Apr; 70(4):627-34. PubMed ID: 26865582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-Gated Single-Shot Picosecond Laser-Induced Breakdown Spectroscopy (ps-LIBS) for Equivalence-Ratio Measurements.
    Gragston M; Hsu P; Patnaik A; Zhang Z; Roy S
    Appl Spectrosc; 2020 Mar; 74(3):340-346. PubMed ID: 31617399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity, stability, and precision of quantitative Ns-LIBS-based fuel-air-ratio measurements for methane-air flames at 1-11 bar.
    Hsu PS; Gragston M; Wu Y; Zhang Z; Patnaik AK; Kiefer J; Roy S; Gord JR
    Appl Opt; 2016 Oct; 55(28):8042-8048. PubMed ID: 27828047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser-induced breakdown spectroscopy measurement in methane and biodiesel flames using an ungated detector.
    Eseller KE; Yueh FY; Singh JP
    Appl Opt; 2008 Nov; 47(31):G144-8. PubMed ID: 19122695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially resolved laser-induced breakdown spectroscopy in methane-air diffusion flames.
    Majd AE; Arabanian AS; Massudi R; Nazeri M
    Appl Spectrosc; 2011 Jan; 65(1):36-42. PubMed ID: 21211152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femtosecond laser-induced plasma spectroscopy for combustion diagnostics in premixed ammonia/air flames.
    Zhang D; Gao Q; Li B; Liu J; Tian Y; Li Z
    Appl Opt; 2019 Oct; 58(28):7810-7816. PubMed ID: 31674464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emissions in short-gated ns/ps/fs-LIBS for fuel-to-air ratio measurements in methane-air flames.
    Gragston M; Hsu P; Jiang N; Roy S; Zhang Z
    Appl Opt; 2021 May; 60(15):C114-C120. PubMed ID: 34143118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and Laminar Flame Speed of an Ammonia/Methane/Air Premixed Flame under Varying Pressure and Equivalence Ratio.
    Rocha RC; Zhong S; Xu L; Bai XS; Costa M; Cai X; Kim H; Brackmann C; Li Z; Aldén M
    Energy Fuels; 2021 May; 35(9):7179-7192. PubMed ID: 34054210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Quantitative Measurement of Equivalence Ratios of Methane/Air Mixture by Laser-Induced Breakdown Spectroscopy: the Effects of Detector Gated Mode and Laser Wavelength].
    Zuo P; Li B; Yan BB; Li ZS; Yao MF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Nov; 35(11):2990-5. PubMed ID: 26978894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The application of separated flames in analytical flame spectroscopy.
    Kirkbright GF; West TS
    Appl Opt; 1968 Jul; 7(7):1305-11. PubMed ID: 20068791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Line Raman, Rayleigh, and laser-induced predissociation fluorescence technique for combustion with a tunable KrF excimer laser.
    Mansour MS; Chen YC
    Appl Opt; 1996 Jul; 35(21):4252-60. PubMed ID: 21102834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Influence of Flame Emission Spectroscopy on K measurement Using Laser Induced Breakdown Spectroscopy].
    Zhang ZH; Song Q; Alwahabi ZT; Yao Q
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Apr; 35(4):1033-6. PubMed ID: 26197597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative planar temperature imaging in turbulent non-premixed flames using filtered Rayleigh scattering.
    McManus TA; Sutton JA
    Appl Opt; 2019 Apr; 58(11):2936-2947. PubMed ID: 31044899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser-induced breakdown spectroscopy for in-cylinder equivalence ratio measurements in laser-ignited natural gas engines.
    Joshi S; Olsen DB; Dumitrescu C; Puzinauskas PV; Yalin AP
    Appl Spectrosc; 2009 May; 63(5):549-54. PubMed ID: 19470212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxyl and its concentration profile in methane-air flames.
    Bechtel JH; Teets RE
    Appl Opt; 1979 Dec; 18(24):4138-44. PubMed ID: 20216770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pump-probe strategy for instantaneous 2D detection of CH
    Han L; Gao Q; Li B; Li Z
    Appl Opt; 2022 Sep; 61(25):7361-7365. PubMed ID: 36256035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composition of reaction intermediates for stoichiometric and fuel-rich dimethyl ether flames: flame-sampling mass spectrometry and modeling studies.
    Wang J; Chaos M; Yang B; Cool TA; Dryer FL; Kasper T; Hansen N; Osswald P; Kohse-Höinghaus K; Westmoreland PR
    Phys Chem Chem Phys; 2009 Mar; 11(9):1328-39. PubMed ID: 19224033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absolute concentration measurements of atomic hydrogen in subatmospheric premixed H(2)/O(2)/N(2) flat flames with photoionization controlled-loss spectroscopy.
    Salmon JT; Laurendeau NM
    Appl Opt; 1987 Jul; 26(14):2881-91. PubMed ID: 20489977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of combustion intermediates in fuel-rich methyl methacrylate flame with tunable synchrotron vacuum ultraviolet photoionization mass spectrometry.
    Lin Z; Wang T; Han D; Han X; Li S; Li Y; Tian Z
    Rapid Commun Mass Spectrom; 2009 Jan; 23(1):85-92. PubMed ID: 19051228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of OH in flames by using polarization spectroscopy.
    Nyholm K; Maier R; Aminoff CG; Kaivola M
    Appl Opt; 1993 Feb; 32(6):919-24. PubMed ID: 20802767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.