BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 26865621)

  • 1. Mind the Gap: Two Dissociable Mechanisms of Temporal Processing in the Auditory System.
    Anderson LA; Linden JF
    J Neurosci; 2016 Feb; 36(6):1977-95. PubMed ID: 26865621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brief Stimulus Exposure Fully Remediates Temporal Processing Deficits Induced by Early Hearing Loss.
    Green DB; Mattingly MM; Ye Y; Gay JD; Rosen MJ
    J Neurosci; 2017 Aug; 37(32):7759-7771. PubMed ID: 28706081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auditory temporal acuity improves with age in the male mouse auditory thalamus: A role for perineuronal nets?
    Quraishe S; Newman T; Anderson L
    J Neurosci Res; 2020 Sep; 98(9):1780-1799. PubMed ID: 31562661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noise Trauma-Induced Behavioral Gap Detection Deficits Correlate with Reorganization of Excitatory and Inhibitory Local Circuits in the Inferior Colliculus and Are Prevented by Acoustic Enrichment.
    Sturm JJ; Zhang-Hooks YX; Roos H; Nguyen T; Kandler K
    J Neurosci; 2017 Jun; 37(26):6314-6330. PubMed ID: 28583912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postnatal development of auditory central evoked responses and thalamic cellular properties.
    Venkataraman Y; Bartlett EL
    Dev Neurobiol; 2014 May; 74(5):541-55. PubMed ID: 24214269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The composite N1 component to gaps in noise.
    Pratt H; Bleich N; Mittelman N
    Clin Neurophysiol; 2005 Nov; 116(11):2648-63. PubMed ID: 16221565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence and function of cortical offset responses in sound termination detection.
    Solyga M; Barkat TR
    Elife; 2021 Dec; 10():. PubMed ID: 34910627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. When Sound Stops: Offset Responses in the Auditory System.
    Kopp-Scheinpflug C; Sinclair JL; Linden JF
    Trends Neurosci; 2018 Oct; 41(10):712-728. PubMed ID: 30274606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deficits in responding to brief noise offsets in Kcna1 -/- mice reveal a contribution of this gene to precise temporal processing seen previously only for stimulus onsets.
    Ison JR; Allen PD
    J Assoc Res Otolaryngol; 2012 Jun; 13(3):351-8. PubMed ID: 22302114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistent Thalamic Sound Processing Despite Profound Cochlear Denervation.
    Chambers AR; Salazar JJ; Polley DB
    Front Neural Circuits; 2016; 10():72. PubMed ID: 27630546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptopathy in the Aging Cochlea: Characterizing Early-Neural Deficits in Auditory Temporal Envelope Processing.
    Parthasarathy A; Kujawa SG
    J Neurosci; 2018 Aug; 38(32):7108-7119. PubMed ID: 29976623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sub-threshold cross-modal sensory interaction in the thalamus: lemniscal auditory response in the medial geniculate nucleus is modulated by somatosensory stimulation.
    Donishi T; Kimura A; Imbe H; Yokoi I; Kaneoke Y
    Neuroscience; 2011 Feb; 174():200-15. PubMed ID: 21111788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of noise vocoding on gap detection thresholds.
    Zhang F; Blankenship C; Xiang J; Houston L; Samy R
    Cochlear Implants Int; 2015; 16(6):331-40. PubMed ID: 25941867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Cortico-Collicular Amplification Mechanism for Gap Detection.
    Weible AP; Yavorska I; Wehr M
    Cereb Cortex; 2020 May; 30(6):3590-3607. PubMed ID: 32055848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of neural response properties with auditory thalamus subdivisions in the awake marmoset.
    Bartlett EL; Wang X
    J Neurophysiol; 2011 Jun; 105(6):2647-67. PubMed ID: 21411564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term, passive exposure to non-traumatic acoustic noise induces neural adaptation in the adult rat medial geniculate body and auditory cortex.
    Lau C; Zhang JW; McPherson B; Pienkowski M; Wu EX
    Neuroimage; 2015 Feb; 107():1-9. PubMed ID: 25479019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental noise affects auditory temporal processing development and NMDA-2B receptor expression in auditory cortex.
    Sun W; Tang L; Allman BL
    Behav Brain Res; 2011 Mar; 218(1):15-20. PubMed ID: 21094188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rescuing Auditory Temporal Processing with a Novel Augmented Acoustic Environment in an Animal Model of Congenital Hearing Loss.
    Dziorny AC; Luebke AE; Scott LL; Walton JP
    eNeuro; 2021; 8(4):. PubMed ID: 34155086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Longitudinal auditory pathophysiology following mild blast-induced trauma.
    Han EX; Fernandez JM; Swanberg C; Shi R; Bartlett EL
    J Neurophysiol; 2021 Oct; 126(4):1172-1189. PubMed ID: 34469703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal acuity is preserved in the auditory midbrain of aged mice.
    Land R; Kral A
    Neurobiol Aging; 2022 Feb; 110():47-60. PubMed ID: 34852306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.