BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 26865621)

  • 21. The association between subcortical and cortical fMRI and lifetime noise exposure in listeners with normal hearing thresholds.
    Dewey RS; Francis ST; Guest H; Prendergast G; Millman RE; Plack CJ; Hall DA
    Neuroimage; 2020 Jan; 204():116239. PubMed ID: 31586673
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemogenetic Activation of Cortical Parvalbumin-Positive Interneurons Reverses Noise-Induced Impairments in Gap Detection.
    Masri S; Chan N; Marsh T; Zinsmaier A; Schaub D; Zhang L; Wang W; Bao S
    J Neurosci; 2021 Oct; 41(42):8848-8857. PubMed ID: 34452937
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environmental enrichment rescues the degraded auditory temporal resolution of cortical neurons induced by early noise exposure.
    Jiang C; Xu X; Yu L; Xu J; Zhang J
    Eur J Neurosci; 2015 Sep; 42(5):2144-54. PubMed ID: 26059984
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Subcortical neural coding mechanisms for auditory temporal processing.
    Frisina RD
    Hear Res; 2001 Aug; 158(1-2):1-27. PubMed ID: 11506933
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Role for Auditory Corticothalamic Feedback in the Perception of Complex Sounds.
    Homma NY; Happel MFK; Nodal FR; Ohl FW; King AJ; Bajo VM
    J Neurosci; 2017 Jun; 37(25):6149-6161. PubMed ID: 28559384
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Age-related changes in event related potentials, steady state responses and temporal processing in the auditory cortex of mice with severe or mild hearing loss.
    Rumschlag JA; Razak KA
    Hear Res; 2021 Dec; 412():108380. PubMed ID: 34758398
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiological differences between histologically defined subdivisions in the mouse auditory thalamus.
    Anderson LA; Linden JF
    Hear Res; 2011 Apr; 274(1-2):48-60. PubMed ID: 21185928
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human auditory brainstem response to temporal gaps in noise.
    Werner LA; Folsom RC; Mancl LR; Syapin CL
    J Speech Lang Hear Res; 2001 Aug; 44(4):737-50. PubMed ID: 11521768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Auditory brainstem correlates of perceptual timing deficits.
    Johnson KL; Nicol TG; Zecker SG; Kraus N
    J Cogn Neurosci; 2007 Mar; 19(3):376-85. PubMed ID: 17335387
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs.
    Ponnath A; Farris HE
    Front Neural Circuits; 2014; 8():85. PubMed ID: 25120437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Auditory steady state responses elicited by silent gaps embedded within a broadband noise.
    Kadowaki S; Morimoto T; Okamoto H
    BMC Neurosci; 2022 May; 23(1):27. PubMed ID: 35524192
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Age-related changes in neural gap detection thresholds in the rat auditory cortex.
    Zhao Y; Xu X; He J; Xu J; Zhang J
    Eur J Neurosci; 2015 Feb; 41(3):285-92. PubMed ID: 25388865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nicotinic acetylcholine receptor subunit α
    Felix RA; Chavez VA; Novicio DM; Morley BJ; Portfors CV
    J Neurophysiol; 2019 Aug; 122(2):451-465. PubMed ID: 31116647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Subcortical processing of speech regularities underlies reading and music aptitude in children.
    Strait DL; Hornickel J; Kraus N
    Behav Brain Funct; 2011 Oct; 7():44. PubMed ID: 22005291
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Excitatory Connectivity and Disturbed Sound Processing in the Auditory Brainstem of Fragile X Mice.
    Garcia-Pino E; Gessele N; Koch U
    J Neurosci; 2017 Aug; 37(31):7403-7419. PubMed ID: 28674175
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional organization of lemniscal and nonlemniscal auditory thalamus.
    Hu B
    Exp Brain Res; 2003 Dec; 153(4):543-9. PubMed ID: 12937877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Early-Life Stress Impairs Perception and Neural Encoding of Rapid Signals in the Auditory Pathway.
    Ye Y; Mattingly MM; Sunthimer MJ; Gay JD; Rosen MJ
    J Neurosci; 2023 May; 43(18):3232-3244. PubMed ID: 36973014
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of noise and cue enhancement on neural responses to speech in auditory midbrain, thalamus and cortex.
    Cunningham J; Nicol T; King C; Zecker SG; Kraus N
    Hear Res; 2002 Jul; 169(1-2):97-111. PubMed ID: 12121743
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Brain stem response to speech: a biological marker of auditory processing.
    Johnson KL; Nicol TG; Kraus N
    Ear Hear; 2005 Oct; 26(5):424-34. PubMed ID: 16230893
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spectro-temporal modulation detection and its relation to speech perception in children with auditory processing disorder.
    Lotfi Y; Moossavi A; Afshari PJ; Bakhshi E; Sadjedi H
    Int J Pediatr Otorhinolaryngol; 2020 Apr; 131():109860. PubMed ID: 31958768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.