BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 26865621)

  • 41. Timing is everything: temporal processing deficits in the aged auditory brainstem.
    Walton JP
    Hear Res; 2010 Jun; 264(1-2):63-9. PubMed ID: 20303402
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Two-channel recording of auditory-evoked potentials to detect age-related deficits in temporal processing.
    Parthasarathy A; Bartlett E
    Hear Res; 2012 Jul; 289(1-2):52-62. PubMed ID: 22560961
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Perceptual gap detection is mediated by gap termination responses in auditory cortex.
    Weible AP; Moore AK; Liu C; DeBlander L; Wu H; Kentros C; Wehr M
    Curr Biol; 2014 Jul; 24(13):1447-55. PubMed ID: 24980499
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transformation of spatial sensitivity along the ascending auditory pathway.
    Yao JD; Bremen P; Middlebrooks JC
    J Neurophysiol; 2015 May; 113(9):3098-111. PubMed ID: 25744891
    [TBL] [Abstract][Full Text] [Related]  

  • 45. N1-p2 recordings to gaps in broadband noise.
    Palmer SB; Musiek FE
    J Am Acad Audiol; 2013 Jan; 24(1):37-45. PubMed ID: 23231815
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gap detection and temporal modulation transfer function as behavioral estimates of auditory temporal acuity using band-limited stimuli in young and older adults.
    Shen Y
    J Speech Lang Hear Res; 2014 Dec; 57(6):2280-92. PubMed ID: 25087722
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The auditory P50 component to onset and offset of sound.
    Pratt H; Starr A; Michalewski HJ; Bleich N; Mittelman N
    Clin Neurophysiol; 2008 Feb; 119(2):376-87. PubMed ID: 18055255
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Relations between perceptual measures of temporal processing, auditory-evoked brainstem responses and speech intelligibility in noise.
    Papakonstantinou A; Strelcyk O; Dau T
    Hear Res; 2011 Oct; 280(1-2):30-7. PubMed ID: 21354285
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An analysis of nonlinear dynamics underlying neural activity related to auditory induction in the rat auditory cortex.
    Noto M; Nishikawa J; Tateno T
    Neuroscience; 2016 Mar; 318():58-83. PubMed ID: 26772432
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Auditory responsive cortex in the squirrel monkey: neural responses to amplitude-modulated sounds.
    Bieser A; Müller-Preuss P
    Exp Brain Res; 1996 Mar; 108(2):273-84. PubMed ID: 8815035
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Noise-Sensitive But More Precise Subcortical Representations Coexist with Robust Cortical Encoding of Natural Vocalizations.
    Souffi S; Lorenzi C; Varnet L; Huetz C; Edeline JM
    J Neurosci; 2020 Jul; 40(27):5228-5246. PubMed ID: 32444386
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Temporal resolution of gaps in noise by the rat is lost with functional decortication.
    Ison JR; O'Connor K; Bowen GP; Bocirnea A
    Behav Neurosci; 1991 Feb; 105(1):33-40. PubMed ID: 2025392
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Age-related alteration in processing of temporal sound features in the auditory midbrain of the CBA mouse.
    Walton JP; Frisina RD; O'Neill WE
    J Neurosci; 1998 Apr; 18(7):2764-76. PubMed ID: 9502833
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sound-induced enhancement of low-intensity vision: multisensory influences on human sensory-specific cortices and thalamic bodies relate to perceptual enhancement of visual detection sensitivity.
    Noesselt T; Tyll S; Boehler CN; Budinger E; Heinze HJ; Driver J
    J Neurosci; 2010 Oct; 30(41):13609-23. PubMed ID: 20943902
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Auditory thalamus and auditory cortex are equally modulated by context during flexible categorization of sounds.
    Jaramillo S; Borges K; Zador AM
    J Neurosci; 2014 Apr; 34(15):5291-301. PubMed ID: 24719107
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Detecting the temporal structure of sound sequences in newborn infants.
    Háden GP; Honing H; Török M; Winkler I
    Int J Psychophysiol; 2015 Apr; 96(1):23-8. PubMed ID: 25722025
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Gap detection in Mongolian gerbils (Meriones unguiculatus).
    Wagner E; Klump GM; Hamann I
    Hear Res; 2003 Feb; 176(1-2):11-6. PubMed ID: 12583877
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Encoding of natural sounds at multiple spectral and temporal resolutions in the human auditory cortex.
    Santoro R; Moerel M; De Martino F; Goebel R; Ugurbil K; Yacoub E; Formisano E
    PLoS Comput Biol; 2014 Jan; 10(1):e1003412. PubMed ID: 24391486
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of conductive hearing loss on central auditory function.
    Bayat A; Farhadi M; Emamdjomeh H; Saki N; Mirmomeni G; Rahim F
    Braz J Otorhinolaryngol; 2017; 83(2):137-141. PubMed ID: 27236631
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Hierarchy of Time Scales for Discriminating and Classifying the Temporal Shape of Sound in Three Auditory Cortical Fields.
    Osman AF; Lee CM; Escabí MA; Read HL
    J Neurosci; 2018 Aug; 38(31):6967-6982. PubMed ID: 29954851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.