These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 26865621)

  • 61. Effects of Signal-to-Noise Ratio on Auditory Cortical Frequency Processing.
    Teschner MJ; Seybold BA; Malone BJ; Hüning J; Schreiner CE
    J Neurosci; 2016 Mar; 36(9):2743-56. PubMed ID: 26937012
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Visual cortex responds to sound onset and offset during passive listening.
    Brang D; Plass J; Sherman A; Stacey WC; Wasade VS; Grabowecky M; Ahn E; Towle VL; Tao JX; Wu S; Issa NP; Suzuki S
    J Neurophysiol; 2022 Jun; 127(6):1547-1563. PubMed ID: 35507478
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Speech Categorization Reveals the Role of Early-Stage Temporal-Coherence Processing in Auditory Scene Analysis.
    Viswanathan V; Shinn-Cunningham BG; Heinz MG
    J Neurosci; 2022 Jan; 42(2):240-254. PubMed ID: 34764159
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Mode-locking neurodynamics predict human auditory brainstem responses to musical intervals.
    Lerud KD; Almonte FV; Kim JC; Large EW
    Hear Res; 2014 Feb; 308():41-9. PubMed ID: 24091182
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Temporal resolution of the human primary auditory cortex in gap detection.
    Rupp A; Gutschalk A; Hack S; Scherg M
    Neuroreport; 2002 Dec; 13(17):2203-7. PubMed ID: 12488797
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Auditory N1 component to gaps in continuous narrowband noises.
    Atcherson SR; Gould HJ; Mendel MI; Ethington CA
    Ear Hear; 2009 Dec; 30(6):687-95. PubMed ID: 19675460
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Corticofugal modulation of the auditory thalamus.
    He J
    Exp Brain Res; 2003 Dec; 153(4):579-90. PubMed ID: 14574430
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Slow Temporal Integration Enables Robust Neural Coding and Perception of a Cue to Sound Source Location.
    Brown AD; Tollin DJ
    J Neurosci; 2016 Sep; 36(38):9908-21. PubMed ID: 27656028
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Across Species "Natural Ablation" Reveals the Brainstem Source of a Noninvasive Biomarker of Binaural Hearing.
    Benichoux V; Ferber A; Hunt S; Hughes E; Tollin D
    J Neurosci; 2018 Oct; 38(40):8563-8573. PubMed ID: 30126974
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Musical training enhances neural processing of binaural sounds.
    Parbery-Clark A; Strait DL; Hittner E; Kraus N
    J Neurosci; 2013 Oct; 33(42):16741-7. PubMed ID: 24133275
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Impaired Subcortical Processing of Amplitude-Modulated Tones in Mice Deficient for
    Bracic G; Hegmann K; Engel J; Kurt S
    eNeuro; 2022; 9(2):. PubMed ID: 35410870
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Auditory temporal processing in Parkinson's disease.
    Guehl D; Burbaud P; Lorenzi C; Ramos C; Bioulac B; Semal C; Demany L
    Neuropsychologia; 2008; 46(9):2326-35. PubMed ID: 18439632
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Stability of complex sound representations in the auditory midbrain across the lifespan despite age-related brainstem delays.
    Land R; Kral A
    Hear Res; 2023 Jun; 433():108763. PubMed ID: 37104991
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Divergent Auditory Nerve Encoding Deficits Between Two Common Etiologies of Sensorineural Hearing Loss.
    Henry KS; Sayles M; Hickox AE; Heinz MG
    J Neurosci; 2019 Aug; 39(35):6879-6887. PubMed ID: 31285299
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Hearing in time: evoked potential studies of temporal processing.
    Picton T
    Ear Hear; 2013; 34(4):385-401. PubMed ID: 24005840
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Hemispheric asymmetry for auditory processing in the human auditory brain stem, thalamus, and cortex.
    Schönwiesner M; Krumbholz K; Rübsamen R; Fink GR; von Cramon DY
    Cereb Cortex; 2007 Feb; 17(2):492-9. PubMed ID: 16565292
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Temporal processing capabilities in repetition conduction aphasia.
    Sidiropoulos K; Ackermann H; Wannke M; Hertrich I
    Brain Cogn; 2010 Aug; 73(3):194-202. PubMed ID: 20621742
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Auditory temporal resolution in children assessed by magnetoencephalography.
    Diedler J; Pietz J; Bast T; Rupp A
    Neuroreport; 2007 Oct; 18(16):1691-5. PubMed ID: 17921870
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Sensory gating functions of the auditory thalamus: Adaptation and modulations through noise-exposure and high-frequency stimulation in rats.
    Zare A; van Zwieten G; Kotz SA; Temel Y; Almasabi F; Schultz BG; Schwartze M; Janssen MLF
    Behav Brain Res; 2023 Jul; 450():114498. PubMed ID: 37201892
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Neurobiologic responses to speech in noise in children with learning problems: deficits and strategies for improvement.
    Cunningham J; Nicol T; Zecker SG; Bradlow A; Kraus N
    Clin Neurophysiol; 2001 May; 112(5):758-67. PubMed ID: 11336890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.