BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 26865628)

  • 21. Auditory-somatosensory bimodal stimulation desynchronizes brain circuitry to reduce tinnitus in guinea pigs and humans.
    Marks KL; Martel DT; Wu C; Basura GJ; Roberts LE; Schvartz-Leyzac KC; Shore SE
    Sci Transl Med; 2018 Jan; 10(422):. PubMed ID: 29298868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bimodal stimulus timing-dependent plasticity in primary auditory cortex is altered after noise exposure with and without tinnitus.
    Basura GJ; Koehler SD; Shore SE
    J Neurophysiol; 2015 Dec; 114(6):3064-75. PubMed ID: 26289461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional characteristics of spontaneously active neurons in rat dorsal cochlear nucleus in vitro.
    Waller HJ; Godfrey DA
    J Neurophysiol; 1994 Feb; 71(2):467-78. PubMed ID: 8176420
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gap prepulse inhibition and auditory brainstem-evoked potentials as objective measures for tinnitus in guinea pigs.
    Dehmel S; Eisinger D; Shore SE
    Front Syst Neurosci; 2012; 6():42. PubMed ID: 22666193
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of hyperactivity after hearing loss in a computational model of the dorsal cochlear nucleus depends on neuron response type.
    Schaette R; Kempter R
    Hear Res; 2008 Jun; 240(1-2):57-72. PubMed ID: 18396381
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: a physiological model for tinnitus.
    Kaltenbach JA; Afman CE
    Hear Res; 2000 Feb; 140(1-2):165-72. PubMed ID: 10675644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus.
    Brozoski TJ; Bauer CA; Caspary DM
    J Neurosci; 2002 Mar; 22(6):2383-90. PubMed ID: 11896177
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stimulus-timing-dependent modifications of rate-level functions in animals with and without tinnitus.
    Stefanescu RA; Koehler SD; Shore SE
    J Neurophysiol; 2015 Feb; 113(3):956-70. PubMed ID: 25392166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Axonal sprouting in the dorsal cochlear nucleus affects gap‑prepulse inhibition following noise exposure.
    Han KH; Mun SK; Sohn S; Piao XY; Park I; Chang M
    Int J Mol Med; 2019 Oct; 44(4):1473-1483. PubMed ID: 31432095
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intense sound-induced plasticity in the dorsal cochlear nucleus of rats: evidence for cholinergic receptor upregulation.
    Kaltenbach JA; Zhang J
    Hear Res; 2007 Apr; 226(1-2):232-43. PubMed ID: 16914276
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding tinnitus: the dorsal cochlear nucleus, organization and plasticity.
    Baizer JS; Manohar S; Paolone NA; Weinstock N; Salvi RJ
    Brain Res; 2012 Nov; 1485():40-53. PubMed ID: 22513100
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Summary of evidence pointing to a role of the dorsal cochlear nucleus in the etiology of tinnitus.
    Kaltenbach JA
    Acta Otolaryngol Suppl; 2006 Dec; (556):20-6. PubMed ID: 17114138
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kv3 K
    Olsen T; Capurro A; Pilati N; Large CH; Hamann M
    Neuropharmacology; 2018 May; 133():319-333. PubMed ID: 29421326
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of acoustic trauma on dorsal cochlear nucleus neuron activity in slices.
    Chang H; Chen K; Kaltenbach JA; Zhang J; Godfrey DA
    Hear Res; 2002 Feb; 164(1-2):59-68. PubMed ID: 11950525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasticity at glycinergic synapses in dorsal cochlear nucleus of rats with behavioral evidence of tinnitus.
    Wang H; Brozoski TJ; Turner JG; Ling L; Parrish JL; Hughes LF; Caspary DM
    Neuroscience; 2009 Dec; 164(2):747-59. PubMed ID: 19699270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ventral cochlear nucleus bushy cells encode hyperacusis in guinea pigs.
    Martel DT; Shore SE
    Sci Rep; 2020 Nov; 10(1):20594. PubMed ID: 33244141
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural mechanisms underlying somatic tinnitus.
    Shore S; Zhou J; Koehler S
    Prog Brain Res; 2007; 166():107-23. PubMed ID: 17956776
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Animal models of spontaneous activity in the healthy and impaired auditory system.
    Eggermont JJ
    Front Neural Circuits; 2015; 9():19. PubMed ID: 25983679
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alterations in the spontaneous discharge patterns of single units in the dorsal cochlear nucleus following intense sound exposure.
    Finlayson PG; Kaltenbach JA
    Hear Res; 2009 Oct; 256(1-2):104-17. PubMed ID: 19622390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Auditory thalamic circuits and GABA
    Caspary DM; Llano DA
    Hear Res; 2017 Jun; 349():197-207. PubMed ID: 27553899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.