These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
400 related articles for article (PubMed ID: 26865698)
1. Fluorescence In Situ Hybridization (FISH)-Based Karyotyping Reveals Rapid Evolution of Centromeric and Subtelomeric Repeats in Common Bean (Phaseolus vulgaris) and Relatives. Iwata-Otsubo A; Radke B; Findley S; Abernathy B; Vallejos CE; Jackson SA G3 (Bethesda); 2016 Apr; 6(4):1013-22. PubMed ID: 26865698 [TBL] [Abstract][Full Text] [Related]
2. Evolutionary dynamics of satellite DNA repeats from Phaseolus beans. Ribeiro T; Dos Santos KG; Richard MM; Sévignac M; Thareau V; Geffroy V; Pedrosa-Harand A Protoplasma; 2017 Mar; 254(2):791-801. PubMed ID: 27335007 [TBL] [Abstract][Full Text] [Related]
3. Comparative cytogenetic mapping between the lima bean (Phaseolus lunatus L.) and the common bean (P. vulgaris L.). Bonifácio EM; Fonsêca A; Almeida C; Dos Santos KG; Pedrosa-Harand A Theor Appl Genet; 2012 May; 124(8):1513-20. PubMed ID: 22331139 [TBL] [Abstract][Full Text] [Related]
4. Identification and characterization of functional centromeres of the common bean. Iwata A; Tek AL; Richard MM; Abernathy B; Fonsêca A; Schmutz J; Chen NW; Thareau V; Magdelenat G; Li Y; Murata M; Pedrosa-Harand A; Geffroy V; Nagaki K; Jackson SA Plant J; 2013 Oct; 76(1):47-60. PubMed ID: 23795942 [TBL] [Abstract][Full Text] [Related]
5. Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping. Zhang Y; Cheng C; Li J; Yang S; Wang Y; Li Z; Chen J; Lou Q BMC Genomics; 2015 Sep; 16(1):730. PubMed ID: 26407707 [TBL] [Abstract][Full Text] [Related]
6. Contrasting rDNA evolution in lima bean (Phaseolus lunatus L.) and common bean (P. vulgaris L., Fabaceae). Almeida C; Pedrosa-Harand A Cytogenet Genome Res; 2011; 132(3):212-7. PubMed ID: 21063080 [TBL] [Abstract][Full Text] [Related]
7. Breaks of macrosynteny and collinearity among moth bean (Vigna aconitifolia), cowpea (V. unguiculata), and common bean (Phaseolus vulgaris). Oliveira ARDS; Martins LDV; Bustamante FO; Muñoz-Amatriaín M; Close T; da Costa AF; Benko-Iseppon AM; Pedrosa-Harand A; Brasileiro-Vidal AC Chromosome Res; 2020 Dec; 28(3-4):293-306. PubMed ID: 32654079 [TBL] [Abstract][Full Text] [Related]
8. Repetitive sequence analysis and karyotyping reveals centromere-associated DNA sequences in radish (Raphanus sativus L.). He Q; Cai Z; Hu T; Liu H; Bao C; Mao W; Jin W BMC Plant Biol; 2015 Apr; 15():105. PubMed ID: 25928652 [TBL] [Abstract][Full Text] [Related]
9. The Subtelomeric khipu Satellite Repeat from Phaseolus vulgaris: Lessons Learned from the Genome Analysis of the Andean Genotype G19833. Richard MM; Chen NW; Thareau V; Pflieger S; Blanchet S; Pedrosa-Harand A; Iwata A; Chavarro C; Jackson SA; Geffroy V Front Plant Sci; 2013; 4():109. PubMed ID: 24137164 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of a Novel Highly Repetitive CACTA Family in Common Bean (Phaseolus vulgaris). Gao D; Zhao D; Abernathy B; Iwata-Otsubo A; Herrera-Estrella A; Jiang N; Jackson SA G3 (Bethesda); 2016 Jul; 6(7):2091-101. PubMed ID: 27185400 [TBL] [Abstract][Full Text] [Related]
11. A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA. Martins C; Ferreira IA; Oliveira C; Foresti F; Galetti PM Genetica; 2006 May; 127(1-3):133-41. PubMed ID: 16850219 [TBL] [Abstract][Full Text] [Related]
12. Karyotype stability in the genus Phaseolus evidenced by the comparative mapping of the wild species Phaseolus microcarpus. Fonsêca A; Pedrosa-Harand A Genome; 2013 Jun; 56(6):335-43. PubMed ID: 23957673 [TBL] [Abstract][Full Text] [Related]
13. Contrasting evolution of a satellite DNA and its ancestral IGS rDNA in Phaseolus (Fabaceae). Almeida C; Fonsêca A; dos Santos KG; Mosiolek M; Pedrosa-Harand A Genome; 2012 Sep; 55(9):683-9. PubMed ID: 23050694 [TBL] [Abstract][Full Text] [Related]
14. Oligo-FISH barcode in beans: a new chromosome identification system. de Oliveira Bustamante F; do Nascimento TH; Montenegro C; Dias S; do Vale Martins L; Braz GT; Benko-Iseppon AM; Jiang J; Pedrosa-Harand A; Brasileiro-Vidal AC Theor Appl Genet; 2021 Nov; 134(11):3675-3686. PubMed ID: 34368889 [TBL] [Abstract][Full Text] [Related]
15. Karyotype variation is indicative of subgenomic and ecotypic differentiation in switchgrass. Young HA; Sarath G; Tobias CM BMC Plant Biol; 2012 Jul; 12():117. PubMed ID: 22834676 [TBL] [Abstract][Full Text] [Related]
16. Chromosomal study of native and hatchery trouts from Italy (Salmo trutta complex, Salmonidae): conventional and FISH analysis. Caputo V; Giovannotti M; Nisi Cerioni P; Splendiani A; Olmo E Cytogenet Genome Res; 2009; 124(1):51-62. PubMed ID: 19372669 [TBL] [Abstract][Full Text] [Related]
17. Comparative chromosomal localization of 45S and 5S rDNAs and implications for genome evolution in Cucumis. Zhang ZT; Yang SQ; Li ZA; Zhang YX; Wang YZ; Cheng CY; Li J; Chen JF; Lou QF Genome; 2016 Jul; 59(7):449-57. PubMed ID: 27334092 [TBL] [Abstract][Full Text] [Related]
18. Repetitive DNA: A Versatile Tool for Karyotyping in Festuca pratensis Huds. Křivánková A; Kopecký D; Stočes Š; Doležel J; Hřibová E Cytogenet Genome Res; 2017; 151(2):96-105. PubMed ID: 28334706 [TBL] [Abstract][Full Text] [Related]
19. Satellite DNA in Paphiopedilum subgenus Parvisepalum as revealed by high-throughput sequencing and fluorescent in situ hybridization. Lee YI; Yap JW; Izan S; Leitch IJ; Fay MF; Lee YC; Hidalgo O; Dodsworth S; Smulders MJM; Gravendeel B; Leitch AR BMC Genomics; 2018 Aug; 19(1):578. PubMed ID: 30068293 [TBL] [Abstract][Full Text] [Related]
20. BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements. Zhang P; Li W; Fellers J; Friebe B; Gill BS Chromosoma; 2004 Mar; 112(6):288-99. PubMed ID: 14986017 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]