BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 26865732)

  • 1. Genome-Wide Association Study in Arabidopsis thaliana of Natural Variation in Seed Oil Melting Point: A Widespread Adaptive Trait in Plants.
    Branham SE; Wright SJ; Reba A; Morrison GD; Linder CR
    J Hered; 2016 May; 107(3):257-65. PubMed ID: 26865732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-Wide Association Study of Arabidopsis thaliana Identifies Determinants of Natural Variation in Seed Oil Composition.
    Branham SE; Wright SJ; Reba A; Linder CR
    J Hered; 2016 May; 107(3):248-56. PubMed ID: 26704140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining association mapping and transcriptomics identify HD2B histone deacetylase as a genetic factor associated with seed dormancy in Arabidopsis thaliana.
    Yano R; Takebayashi Y; Nambara E; Kamiya Y; Seo M
    Plant J; 2013 Jun; 74(5):815-28. PubMed ID: 23464703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural variation for seed oil composition in Arabidopsis thaliana.
    O'Neill CM; Gill S; Hobbs D; Morgan C; Bancroft I
    Phytochemistry; 2003 Nov; 64(6):1077-90. PubMed ID: 14568074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence timing and fitness consequences of variation in seed oil composition in Arabidopsis thaliana.
    Pelc SE; Linder CR
    Ecol Evol; 2015 Jan; 5(1):164-71. PubMed ID: 25628873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive Evolution of Seed Oils in Plants: Accounting for the Biogeographic Distribution of Saturated and Unsaturated Fatty Acids in Seed Oils.
    Linder CR
    Am Nat; 2000 Oct; 156(4):442-458. PubMed ID: 29592140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative trait loci involved in regulating seed oil composition in Arabidopsis thaliana and their evolutionary implications.
    Sanyal A; Randal Linder C
    Theor Appl Genet; 2012 Mar; 124(4):723-38. PubMed ID: 22072101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth.
    Bonaventure G; Salas JJ; Pollard MR; Ohlrogge JB
    Plant Cell; 2003 Apr; 15(4):1020-33. PubMed ID: 12671095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association Genetics Identifies Single Nucleotide Polymorphisms Related to Kernel Oil Content and Quality in Camellia oleifera.
    Lin P; Yin H; Yan C; Yao X; Wang K
    J Agric Food Chem; 2019 Mar; 67(9):2547-2562. PubMed ID: 30758959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural variation in acyl editing is a determinant of seed storage oil composition.
    Menard GN; Bryant FM; Kelly AA; Craddock CP; Lavagi I; Hassani-Pak K; Kurup S; Eastmond PJ
    Sci Rep; 2018 Nov; 8(1):17346. PubMed ID: 30478395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasticity and constraints on fatty acid composition in the phospholipids and triacylglycerols of Arabidopsis accessions grown at different temperatures.
    Sanyal A; Linder CR
    BMC Plant Biol; 2013 Apr; 13():63. PubMed ID: 23594395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional variants of
    MartĂ­nez-Berdeja A; Stitzer MC; Taylor MA; Okada M; Ezcurra E; Runcie DE; Schmitt J
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2526-2534. PubMed ID: 31964817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome Wide Analysis of Fatty Acid Desaturation and Its Response to Temperature.
    Menard GN; Moreno JM; Bryant FM; Munoz-Azcarate O; Kelly AA; Hassani-Pak K; Kurup S; Eastmond PJ
    Plant Physiol; 2017 Mar; 173(3):1594-1605. PubMed ID: 28108698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural variation in seed very long chain fatty acid content is controlled by a new isoform of KCS18 in Arabidopsis thaliana.
    Jasinski S; LĂ©cureuil A; Miquel M; Loudet O; Raffaele S; Froissard M; Guerche P
    PLoS One; 2012; 7(11):e49261. PubMed ID: 23145136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The natural genetic variation of the fatty-acyl composition of seed oils in different ecotypes of Arabidopsis thaliana.
    Millar AA; Kunst L
    Phytochemistry; 1999 Nov; 52(6):1029-33. PubMed ID: 10643668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide approaches delineate the additive, epistatic, and pleiotropic nature of variants controlling fatty acid composition in peanut (Arachis hypogaea L.).
    Otyama PI; Chamberlin K; Ozias-Akins P; Graham MA; Cannon EKS; Cannon SB; MacDonald GE; Anglin NL
    G3 (Bethesda); 2022 Jan; 12(1):. PubMed ID: 34751378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coselected genes determine adaptive variation in herbivore resistance throughout the native range of Arabidopsis thaliana.
    Brachi B; Meyer CG; Villoutreix R; Platt A; Morton TC; Roux F; Bergelson J
    Proc Natl Acad Sci U S A; 2015 Mar; 112(13):4032-7. PubMed ID: 25775585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive evolution of seed oil content in angiosperms: accounting for the global patterns of seed oils.
    Sanyal A; Decocq G
    BMC Evol Biol; 2016 Sep; 16(1):187. PubMed ID: 27613109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variation in seed fatty acid composition and sequence divergence in the FAD2 gene coding region between wild and cultivated sesame.
    Chen Z; Tonnis B; Morris B; Wang RB; Zhang AL; Pinnow D; Wang ML
    J Agric Food Chem; 2014 Dec; 62(48):11706-10. PubMed ID: 25386691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds.
    Kanai M; Mano S; Kondo M; Hayashi M; Nishimura M
    Plant Biotechnol J; 2016 May; 14(5):1241-50. PubMed ID: 26503031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.