These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Reaction-diffusion master equation in the microscopic limit. Hellander S; Hellander A; Petzold L Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):042901. PubMed ID: 22680526 [TBL] [Abstract][Full Text] [Related]
4. A Gaussian jump process formulation of the reaction-diffusion master equation enables faster exact stochastic simulations. Subic T; Sbalzarini IF J Chem Phys; 2022 Nov; 157(19):194110. PubMed ID: 36414462 [TBL] [Abstract][Full Text] [Related]
5. Reaction-diffusion master equation, diffusion-limited reactions, and singular potentials. Isaacson SA; Isaacson D Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066106. PubMed ID: 20365230 [TBL] [Abstract][Full Text] [Related]
6. Mesoscopic-microscopic spatial stochastic simulation with automatic system partitioning. Hellander S; Hellander A; Petzold L J Chem Phys; 2017 Dec; 147(23):234101. PubMed ID: 29272930 [TBL] [Abstract][Full Text] [Related]
7. Stochastic modeling and simulation of reaction-diffusion system with Hill function dynamics. Chen M; Li F; Wang S; Cao Y BMC Syst Biol; 2017 Mar; 11(Suppl 3):21. PubMed ID: 28361679 [TBL] [Abstract][Full Text] [Related]
8. Breakdown of the reaction-diffusion master equation with nonelementary rates. Smith S; Grima R Phys Rev E; 2016 May; 93(5):052135. PubMed ID: 27300857 [TBL] [Abstract][Full Text] [Related]
9. Reaction rates for mesoscopic reaction-diffusion kinetics. Hellander S; Hellander A; Petzold L Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023312. PubMed ID: 25768640 [TBL] [Abstract][Full Text] [Related]
10. The Spatial Chemical Langevin Equation and Reaction Diffusion Master Equations: moments and qualitative solutions. Ghosh A; Leier A; Marquez-Lago TT Theor Biol Med Model; 2015 Feb; 12():5. PubMed ID: 25888773 [TBL] [Abstract][Full Text] [Related]
11. Adaptive Mesh Refinement and Adaptive Time Integration for Electrical Wave Propagation on the Purkinje System. Ying W; Henriquez CS Biomed Res Int; 2015; 2015():137482. PubMed ID: 26581455 [TBL] [Abstract][Full Text] [Related]
13. A hybrid smoothed dissipative particle dynamics (SDPD) spatial stochastic simulation algorithm (sSSA) for advection-diffusion-reaction problems. Brian D; Bruno J; Zhen L; Tau-Mu Y; Linda P J Comput Phys; 2019 Feb; 378():1-17. PubMed ID: 31031417 [TBL] [Abstract][Full Text] [Related]
14. Reaction rates for a generalized reaction-diffusion master equation. Hellander S; Petzold L Phys Rev E; 2016 Jan; 93(1):013307. PubMed ID: 26871190 [TBL] [Abstract][Full Text] [Related]
15. Stochastic simulation of catalytic surface reactions in the fast diffusion limit. Mastny EA; Haseltine EL; Rawlings JB J Chem Phys; 2006 Nov; 125(19):194715. PubMed ID: 17129158 [TBL] [Abstract][Full Text] [Related]
16. A hybrid method for micro-mesoscopic stochastic simulation of reaction-diffusion systems. Sayyidmousavi A; Rohlf K; Ilie S Math Biosci; 2019 Jun; 312():23-32. PubMed ID: 30998936 [TBL] [Abstract][Full Text] [Related]
17. A Posteriori Error Estimates for Fully Discrete Finite Element Method for Generalized Diffusion Equation with Delay. Wang W; Yi L; Xiao A J Sci Comput; 2020; 84(1):13. PubMed ID: 32834471 [TBL] [Abstract][Full Text] [Related]
18. ANALYSIS AND DESIGN OF JUMP COEFFICIENTS IN DISCRETE STOCHASTIC DIFFUSION MODELS. Meinecke L; Engblom S; Hellander A; Lötstedt P SIAM J Sci Comput; 2016; 38(1):A55-A83. PubMed ID: 28611531 [TBL] [Abstract][Full Text] [Related]
19. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks. Salis H; Kaznessis YN J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038 [TBL] [Abstract][Full Text] [Related]