BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 26865905)

  • 1. An integrated acoustic and dielectrophoretic particle manipulation in a microfluidic device for particle wash and separation fabricated by mechanical machining.
    Çetin B; Özer MB; Çağatay E; Büyükkoçak S
    Biomicrofluidics; 2016 Jan; 10(1):014112. PubMed ID: 26865905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of continuous flow microfluidics device with 3D electrode structures for high throughput DEP applications using mechanical machining.
    Zeinali S; Çetin B; Oliaei SN; Karpat Y
    Electrophoresis; 2015 Jul; 36(13):1432-42. PubMed ID: 25808433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Generation Dielectrophoretic-Based Microfluidic Device for Multi-Type Cell Separation.
    Sharbati P; Sadaghiani AK; Koşar A
    Biosensors (Basel); 2023 Mar; 13(4):. PubMed ID: 37185493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabricating a dielectrophoretic microfluidic device using 3D-printed moulds and silver conductive paint.
    Valijam S; Nilsson DPG; Malyshev D; Öberg R; Salehi A; Andersson M
    Sci Rep; 2023 Jun; 13(1):9560. PubMed ID: 37308526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AC-dielectrophoretic characterization and separation of submicron and micron particles using sidewall AgPDMS electrodes.
    Lewpiriyawong N; Yang C
    Biomicrofluidics; 2012 Mar; 6(1):12807-128079. PubMed ID: 22662074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectrophoretic Separation of Particles Using Microfluidic Chip with Composite Three-Dimensional Electrode.
    Chen L; Liu X; Zheng X; Zhang X; Yang J; Tian T; Liao Y
    Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32698449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S; Park JK
    Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiation dominated acoustophoresis driven by surface acoustic waves.
    Guo J; Kang Y; Ai Y
    J Colloid Interface Sci; 2015 Oct; 455():203-11. PubMed ID: 26070191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low cost integration of 3D-electrode structures into microfluidic devices by replica molding.
    Mustin B; Stoeber B
    Lab Chip; 2012 Nov; 12(22):4702-8. PubMed ID: 23007263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectrophoretic manipulation of particles in a modified microfluidic H filter with multi-insulating blocks.
    Lewpiriyawong N; Yang C; Lam YC
    Biomicrofluidics; 2008 Aug; 2(3):34105. PubMed ID: 19693372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lab-on-a-chip device for continuous particle and cell separation based on electrical properties via alternating current dielectrophoresis.
    Cetin B; Li D
    Electrophoresis; 2010 Sep; 31(18):3035-43. PubMed ID: 20872609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Simplified Microfluidic Device for Particle Separation with Two Consecutive Steps: Induced Charge Electro-osmotic Prefocusing and Dielectrophoretic Separation.
    Chen X; Ren Y; Liu W; Feng X; Jia Y; Tao Y; Jiang H
    Anal Chem; 2017 Sep; 89(17):9583-9592. PubMed ID: 28783330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes.
    Lewpiriyawong N; Yang C; Lam YC
    Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization Analysis of Particle Separation Parameters for a Standing Surface Acoustic Wave Acoustofluidic Chip.
    Han J; Hu H; Lei Y; Huang Q; Fu C; Gai C; Ning J
    ACS Omega; 2023 Jan; 8(1):311-323. PubMed ID: 36643460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of silicon, glass, FR4, PDMS and PMMA as a chip material for acoustic particle/cell manipulation in microfluidics.
    Açıkgöz HN; Karaman A; Şahin MA; Çaylan ÖR; Büke GC; Yıldırım E; Eroğlu İC; Erson-Bensan AE; Çetin B; Özer MB
    Ultrasonics; 2023 Mar; 129():106911. PubMed ID: 36528906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic characterization and continuous separation of cells and particles using conducting poly(dimethyl siloxane) electrode induced alternating current-dielectrophoresis.
    Lewpiriyawong N; Kandaswamy K; Yang C; Ivanov V; Stocker R
    Anal Chem; 2011 Dec; 83(24):9579-85. PubMed ID: 22035423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thin film piezoelectrics for bulk acoustic wave (BAW) acoustophoresis.
    Reichert P; Deshmukh D; Lebovitz L; Dual J
    Lab Chip; 2018 Dec; 18(23):3655-3667. PubMed ID: 30374500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel.
    Nam J; Lim H; Kim D; Shin S
    Lab Chip; 2011 Oct; 11(19):3361-4. PubMed ID: 21842070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Acoustophoretic and Dielectrophoretic Forces for Droplet Injection in Droplet-Based Microfluidic Devices.
    De Lora JA; Aubermann F; Frey C; Jahnke T; Wang Y; Weber S; Platzman I; Spatz JP
    ACS Omega; 2024 Apr; 9(14):16097-16105. PubMed ID: 38617618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes.
    Chu H; Doh I; Cho YH
    Lab Chip; 2009 Mar; 9(5):686-91. PubMed ID: 19224018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.