These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 26865907)
1. Ex vivo characterization of age-associated impedance changes of single vascular endothelial cells using micro electrical impedance spectroscopy with a cell trap. Park Y; Cha JJ; Seo S; Yun J; Woo Kim H; Park C; Gang G; Lim J; Lee JH Biomicrofluidics; 2016 Jan; 10(1):014114. PubMed ID: 26865907 [TBL] [Abstract][Full Text] [Related]
2. Micro electrical impedance spectroscopy on a needle for ex vivo discrimination between human normal and cancer renal tissues. Yun J; Kim HW; Park Y; Cha JJ; Lee JZ; Shin DG; Lee JH Biomicrofluidics; 2016 May; 10(3):034109. PubMed ID: 27279933 [TBL] [Abstract][Full Text] [Related]
3. Microelectrical Impedance Spectroscopy for the Differentiation between Normal and Cancerous Human Urothelial Cell Lines: Real-Time Electrical Impedance Measurement at an Optimal Frequency. Park Y; Kim HW; Yun J; Seo S; Park CJ; Lee JZ; Lee JH Biomed Res Int; 2016; 2016():8748023. PubMed ID: 26998490 [TBL] [Abstract][Full Text] [Related]
4. Discrimination between the human prostate normal cell and cancer cell by using a novel electrical impedance spectroscopy controlling the cross-sectional area of a microfluidic channel. Kang G; Kim YJ; Moon HS; Lee JW; Yoo TK; Park K; Lee JH Biomicrofluidics; 2013; 7(4):44126. PubMed ID: 24404059 [TBL] [Abstract][Full Text] [Related]
5. Improvement of Depth Profiling into Biotissues Using Micro Electrical Impedance Spectroscopy on a Needle with Selective Passivation. Yun J; Kim HW; Lee JH Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 28009845 [TBL] [Abstract][Full Text] [Related]
6. Detection of ischemic changes in the vascular endothelial cell layer by using microelectrochemical impedance spectroscopy. Cha JJ; Kim J; Yun J; Park Y; Lee JH Med Eng Phys; 2018 Dec; 62():58-62. PubMed ID: 30318362 [TBL] [Abstract][Full Text] [Related]
7. Electrical Impedance Spectroscopy of plant cells in aqueous biological buffer solutions and their modelling using a unified electrical equivalent circuit over a wide frequency range: 4Hz to 20 GHz. Kadan-Jamal K; Sophocleous M; Jog A; Desagani D; Teig-Sussholz O; Georgiou J; Avni A; Shacham-Diamand Y Biosens Bioelectron; 2020 Nov; 168():112485. PubMed ID: 32896772 [TBL] [Abstract][Full Text] [Related]
8. A microfluidic device for simultaneous electrical and mechanical measurements on single cells. Chen J; Zheng Y; Tan Q; Zhang YL; Li J; Geddie WR; Jewett MA; Sun Y Biomicrofluidics; 2011 Mar; 5(1):14113. PubMed ID: 21523251 [TBL] [Abstract][Full Text] [Related]
9. An orbital shear platform for real-time, in vitro endothelium characterization. Velasco V; Gruenthal M; Zusstone E; Thomas JM; Berson RE; Keynton RS; Williams SJ Biotechnol Bioeng; 2016 Jun; 113(6):1336-44. PubMed ID: 26615057 [TBL] [Abstract][Full Text] [Related]
10. Recent Advances in Electrical Impedance Sensing Technology for Single-Cell Analysis. Zhang Z; Huang X; Liu K; Lan T; Wang Z; Zhu Z Biosensors (Basel); 2021 Nov; 11(11):. PubMed ID: 34821686 [TBL] [Abstract][Full Text] [Related]
11. Fitting the determined impedance in the guinea pig inner ear to Randles circuit using square error minimization in the range of 100 Hz to 50 kHz. Pleshkov MO; D'Alessandro S; Svetlik MV; Starkov DN; Zaitsev VA; Handler M; Baumgarten D; Saba R; van de Berg R; Demkin VP; Kingma H Biomed Phys Eng Express; 2022 Jan; 8(2):. PubMed ID: 35042198 [No Abstract] [Full Text] [Related]
12. Evaluation of Electrical Impedance Spectroscopy-on-a-Needle as a Novel Tool to Determine Optimal Surgical Margin in Partial Nephrectomy. Kim HW; Yun J; Lee JZ; Shin DG; Lee JH Adv Healthc Mater; 2017 Sep; 6(18):. PubMed ID: 28696572 [TBL] [Abstract][Full Text] [Related]
14. Dynamic monitoring of single cell lysis in an impedance-based microfluidic device. Zhou Y; Basu S; Laue ED; Seshia AA Biomed Microdevices; 2016 Aug; 18(4):56. PubMed ID: 27299468 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of electrical characteristics of biological tissue with electrical impedance spectroscopy. Yao J; Wang L; Liu K; Wu H; Wang H; Huang J; Li J Electrophoresis; 2020 Sep; 41(16-17):1425-1432. PubMed ID: 31863489 [TBL] [Abstract][Full Text] [Related]
16. A detailed model for high-frequency impedance characterization of ovarian cancer epithelial cell layer using ECIS electrodes. Rahman AR; Lo CM; Bhansali S IEEE Trans Biomed Eng; 2009 Feb; 56(2):485-92. PubMed ID: 19272881 [TBL] [Abstract][Full Text] [Related]
17. New equivalent-electrical circuit model and a practical measurement method for human body impedance. Chinen K; Kinjo I; Zamami A; Irei K; Nagayama K Biomed Mater Eng; 2015; 26 Suppl 1():S779-86. PubMed ID: 26406074 [TBL] [Abstract][Full Text] [Related]
18. Microtrap electrode devices for single cell trapping and impedance measurement. Mondal D; Roychaudhuri C; Das L; Chatterjee J Biomed Microdevices; 2012 Oct; 14(5):955-64. PubMed ID: 22767244 [TBL] [Abstract][Full Text] [Related]
19. Cell Electrical Impedance as a Novel Approach for Studies on Senescence Not Based on Biomarkers. Cha JJ; Park Y; Yun J; Kim HW; Park CJ; Kang G; Jung M; Pak B; Jin SW; Lee JH Biomed Res Int; 2016; 2016():8484217. PubMed ID: 27812531 [TBL] [Abstract][Full Text] [Related]
20. Quantification of the specific membrane capacitance of single cells using a microfluidic device and impedance spectroscopy measurement. Tan Q; Ferrier GA; Chen BK; Wang C; Sun Y Biomicrofluidics; 2012 Sep; 6(3):34112. PubMed ID: 23940502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]