BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 26866055)

  • 21. Investigating the transmission profiles of 808 nm laser through different regions of the rat's head.
    Hamdy O; Mohammed HS
    Lasers Med Sci; 2021 Jun; 36(4):803-810. PubMed ID: 32638241
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An investigation of light transport through scattering bodies with non-scattering regions.
    Firbank M; Arridge SR; Schweiger M; Delpy DT
    Phys Med Biol; 1996 Apr; 41(4):767-83. PubMed ID: 8730669
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling the Effect of Temperature on Membrane Response of Light Stimulation in Optogenetically-Targeted Neurons.
    Peixoto HM; Cruz RMS; Moulin TC; Leão RN
    Front Comput Neurosci; 2020; 14():5. PubMed ID: 32116619
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light scattering properties vary across different regions of the adult mouse brain.
    Al-Juboori SI; Dondzillo A; Stubblefield EA; Felsen G; Lei TC; Klug A
    PLoS One; 2013; 8(7):e67626. PubMed ID: 23874433
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain.
    Pan T; Rasmussen JC; Lee JH; Sevick-Muraca EM
    Med Phys; 2007 Apr; 34(4):1298-311. PubMed ID: 17500461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tissue Transparency In Vivo.
    Inyushin M; Meshalkina D; Zueva L; Zayas-Santiago A
    Molecules; 2019 Jun; 24(13):. PubMed ID: 31261621
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams.
    Keijzer M; Jacques SL; Prahl SA; Welch AJ
    Lasers Surg Med; 1989; 9(2):148-54. PubMed ID: 2716459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determining the light scattering and absorption parameters from forward-directed flux measurements in cardiac tissue.
    Costantino AJ; Hyatt CJ; Kollisch-Singule MC; Beaumont J; Roth BJ; Pertsov AM
    J Biomed Opt; 2017 Jul; 22(7):76009. PubMed ID: 28715543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Optogenetics in Investigations of Brain Mechanisms of Behavior].
    Dygalo NN
    Usp Fiziol Nauk; 2015; 46(2):17-23. PubMed ID: 26155665
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optogenetics in Drosophila Neuroscience.
    Riemensperger T; Kittel RJ; Fiala A
    Methods Mol Biol; 2016; 1408():167-75. PubMed ID: 26965122
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of scatter in digital mammography from use of Monte Carlo simulations and comparison to physical measurements.
    Leon SM; Brateman LF; Wagner LK
    Med Phys; 2014 Nov; 41(11):111914. PubMed ID: 25370647
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of methods to determine electron pencil beam spread in tissue-equivalent media.
    Sandison GA; Huda W; Savoie D; Battista JJ
    Med Phys; 1989; 16(6):881-8. PubMed ID: 2511396
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Monte Carlo model for the absorption and flux distributions of light in tissue.
    Wilson BC; Adam G
    Med Phys; 1983; 10(6):824-30. PubMed ID: 6656695
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spotlighted Brains: Optogenetic Activation and Silencing of Neurons.
    Kianianmomeni A; Hallmann A
    Trends Biochem Sci; 2015 Nov; 40(11):624-627. PubMed ID: 26433473
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optogenetic Approaches for Mesoscopic Brain Mapping.
    Kyweriga M; Mohajerani MH
    Methods Mol Biol; 2016; 1408():251-65. PubMed ID: 26965128
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An analytical model for light ion pencil beam dose distributions: multiple scattering of primary and secondary ions.
    Hollmark M; Gudowska I; Belkić Dz; Brahme A; Sobolevsky N
    Phys Med Biol; 2008 Jul; 53(13):3477-91. PubMed ID: 18547916
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new approach for optical assessment of directional anisotropy in turbid media.
    Ghassemi P; Moffatt LT; Shupp JW; Ramella-Roman JC
    J Biophotonics; 2016 Jan; 9(1-2):100-8. PubMed ID: 25601476
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling of light absorption in tissue during infrared neural stimulation.
    Thompson AC; Wade SA; Brown WG; Stoddart PR
    J Biomed Opt; 2012 Jul; 17(7):075002. PubMed ID: 22894474
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiplexed temporally focused light shaping through a gradient index lens for precise in-depth optogenetic photostimulation.
    Accanto N; Chen IW; Ronzitti E; Molinier C; Tourain C; Papagiakoumou E; Emiliani V
    Sci Rep; 2019 May; 9(1):7603. PubMed ID: 31110187
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth.
    Kanick SC; Robinson DJ; Sterenborg HJ; Amelink A
    Phys Med Biol; 2009 Nov; 54(22):6991-7008. PubMed ID: 19887712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.