BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

747 related articles for article (PubMed ID: 26866474)

  • 1. Recent Land Use Change to Agriculture in the U.S. Lake States: Impacts on Cellulosic Biomass Potential and Natural Lands.
    Mladenoff DJ; Sahajpal R; Johnson CP; Rothstein DE
    PLoS One; 2016; 11(2):e0148566. PubMed ID: 26866474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sustainable bioenergy production from marginal lands in the US Midwest.
    Gelfand I; Sahajpal R; Zhang X; Izaurralde RC; Gross KL; Robertson GP
    Nature; 2013 Jan; 493(7433):514-7. PubMed ID: 23334409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Landscape patterns of bioenergy in a changing climate: implications for crop allocation and land-use competition.
    Graves RA; Pearson SM; Turner MG
    Ecol Appl; 2016 Mar; 26(2):515-29. PubMed ID: 27209792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production.
    Gelfand I; Zenone T; Jasrotia P; Chen J; Hamilton SK; Robertson GP
    Proc Natl Acad Sci U S A; 2011 Aug; 108(33):13864-9. PubMed ID: 21825117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofuels, land, and water: a systems approach to sustainability.
    Gopalakrishnan G; Negri MC; Wang M; Wu M; Snyder SW; Lafreniere L
    Environ Sci Technol; 2009 Aug; 43(15):6094-100. PubMed ID: 19731724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofuels and biodiversity.
    Wiens J; Fargione J; Hill J
    Ecol Appl; 2011 Jun; 21(4):1085-95. PubMed ID: 21774415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofuels on the landscape: is "land sharing" preferable to "land sparing"?
    Anderson-Teixeira KJ; Duval BD; Long SP; DeLucia EH
    Ecol Appl; 2012 Dec; 22(8):2035-48. PubMed ID: 23387108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of bioenergy on biodiversity arising from land-use change and crop type.
    Núñez-Regueiro MM; Siddiqui SF; Fletcher RJ
    Conserv Biol; 2021 Feb; 35(1):77-87. PubMed ID: 31854480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems.
    Adler PR; Del Grosso SJ; Parton WJ
    Ecol Appl; 2007 Apr; 17(3):675-91. PubMed ID: 17494388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the Returns to Land and Greenhouse Gas Savings from Producing Energy Crops on Conservation Reserve Program Land.
    Chen L; Blanc-Betes E; Hudiburg TW; Hellerstein D; Wallander S; DeLucia EH; Khanna M
    Environ Sci Technol; 2021 Jan; 55(2):1301-1309. PubMed ID: 33410666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Land clearing and the biofuel carbon debt.
    Fargione J; Hill J; Tilman D; Polasky S; Hawthorne P
    Science; 2008 Feb; 319(5867):1235-8. PubMed ID: 18258862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternative scenarios of bioenergy crop production in an agricultural landscape and implications for bird communities.
    Blank PJ; Williams CL; Sample DW; Meehan TD; Turner MG
    Ecol Appl; 2016 Jan; 26(1):42-54. PubMed ID: 27039508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions among bioenergy feedstock choices, landscape dynamics, and land use.
    Dale VH; Kline KL; Wright LL; Perlack RD; Downing M; Graham RL
    Ecol Appl; 2011 Jun; 21(4):1039-54. PubMed ID: 21774412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential greenhouse gas reductions from Natural Climate Solutions in Oregon, USA.
    Graves RA; Haugo RD; Holz A; Nielsen-Pincus M; Jones A; Kellogg B; Macdonald C; Popper K; Schindel M
    PLoS One; 2020; 15(4):e0230424. PubMed ID: 32275725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations.
    Robertson GP; Hamilton SK; Del Grosso SJ; Parton WJ
    Ecol Appl; 2011 Jun; 21(4):1055-67. PubMed ID: 21774413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The potential impacts of biomass feedstock production on water resource availability.
    Stone KC; Hunt PG; Cantrell KB; Ro KS
    Bioresour Technol; 2010 Mar; 101(6):2014-25. PubMed ID: 19939667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the Potential of Marginal Land for Cellulosic Feedstock Production and Carbon Sequestration in the United States.
    Emery I; Mueller S; Qin Z; Dunn JB
    Environ Sci Technol; 2017 Jan; 51(1):733-741. PubMed ID: 27976872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The global potential of bioenergy on abandoned agriculture lands.
    Campbell JE; Lobell DB; Genova RC; Field CB
    Environ Sci Technol; 2008 Aug; 42(15):5791-4. PubMed ID: 18754510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integral analysis of environmental and economic performance of combined agricultural intensification & bioenergy production in the Orinoquia region.
    Ramirez-Contreras NE; Fontanilla-Díaz CA; Pardo LE; Delgado T; Munar-Florez D; Wicke B; Ruíz-Delgado J; van der Hilst F; Garcia-Nuñez JA; Mosquera-Montoya M; Faaij APC
    J Environ Manage; 2022 Feb; 303():114137. PubMed ID: 34847366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Greenhouse gas mitigation on marginal land: a quantitative review of the relative benefits of forest recovery versus biofuel production.
    Evans SG; Ramage BS; DiRocco TL; Potts MD
    Environ Sci Technol; 2015 Feb; 49(4):2503-11. PubMed ID: 25582654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.