These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 26866536)

  • 1. Role of Resonances in the Transmission of Surface Plasmon Polaritons between Nanostructures.
    Johns P; Yu K; Devadas MS; Hartland GV
    ACS Nano; 2016 Mar; 10(3):3375-81. PubMed ID: 26866536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of substrate discontinuities on the propagating surface plasmon polariton modes in gold nanobars.
    Johns P; Yu K; Devadas MS; Li Z; Major TA; Hartland GV
    Nanoscale; 2014 Nov; 6(23):14289-96. PubMed ID: 25321926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cathodoluminescence Phase Extraction of the Coupling between Nanoparticles and Surface Plasmon Polaritons.
    Sannomiya T; Konečná A; Matsukata T; Thollar Z; Okamoto T; García de Abajo FJ; Yamamoto N
    Nano Lett; 2020 Jan; 20(1):592-598. PubMed ID: 31855432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the transmission of surface plasmon polaritons across nano and micro gaps in gold stripes.
    Ghafoori G; Boneberg J; Leiderer P; Scheer E
    Opt Express; 2016 Jul; 24(15):17313-20. PubMed ID: 27464180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Narrowband plasmonic excitation on gold hole-array nanostructures observed using spectroscopic ellipsometer.
    Li GX; Wang ZL; Chen SM; Cheah KW
    Opt Express; 2011 Mar; 19(7):6348-53. PubMed ID: 21451662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculated thickness dependent plasmonic properties of gold nanobars in the visible to near-infrared light regime.
    Ghosh PK; Debu DT; French DA; Herzog JB
    PLoS One; 2017; 12(5):e0177463. PubMed ID: 28486554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic Coupled Modes in a Metal-Dielectric Periodic Nanostructure.
    Coello V; Abdulkareem MA; Garcia-Ortiz CE; Sosa-Sánchez CT; Téllez-Limón R; Peña-Gomar M
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband focusing and demultiplexing of surface plasmon polaritons on metal surface by holographic groove patterns.
    Chen YG; Yang FY; Liu J; Li ZY
    Opt Express; 2014 Jun; 22(12):14727-37. PubMed ID: 24977568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars.
    Chau YF; Lin YJ; Tsai DP
    Opt Express; 2010 Feb; 18(4):3510-8. PubMed ID: 20389360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gap surface plasmon polaritons enhanced by a plasmonic lens.
    Chul Kim H; Cheng X
    Opt Lett; 2011 Aug; 36(16):3082-4. PubMed ID: 21847167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Planar plasmonic focusing and optical transport using CdS nanoribbon.
    Fang Z; Lin C; Ma R; Huang S; Zhu X
    ACS Nano; 2010 Jan; 4(1):75-82. PubMed ID: 20000805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial Mode Interactions of Surface Plasmon Polaritons on Gold Nanodome Films.
    Ko WR; Zhang J; Park HH; Nah J; Suh JY; Lee MH
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20516-21. PubMed ID: 27144402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Odd-mode surface plasmon polaritons supported by complementary plasmonic metamaterial.
    Gao X; Zhou L; Cui TJ
    Sci Rep; 2015 Mar; 5():9250. PubMed ID: 25783166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced metal nanostructure design for surface plasmon photonic bandgap biosensor device.
    Chiu NF; Nien SY; Yu C; Lee JH; Lin CW
    Conf Proc IEEE Eng Med Biol Soc; 2006; Suppl():6521-4. PubMed ID: 17959441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size dependence of surface plasmon modes in one-dimensional plasmonic crystal cavities.
    Honda M; Yamamoto N
    Opt Express; 2013 May; 21(10):11973-83. PubMed ID: 23736419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of a near-field optical probe to locally launch surface plasmon polaritons on plasmonic waveguides: a study by the finite difference time domain method.
    Hwang BS; Kwon MH; Kim J
    Microsc Res Tech; 2004 Aug; 64(5-6):453-8. PubMed ID: 15549697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semiconductor surface plasmon sources.
    Babuty A; Bousseksou A; Tetienne JP; Doyen IM; Sirtori C; Beaudoin G; Sagnes I; De Wilde Y; Colombelli R
    Phys Rev Lett; 2010 Jun; 104(22):226806. PubMed ID: 20867196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mode-specific study of nanoparticle-mediated optical interactions in an absorber/metal thin film system.
    Yu B; Woo J; Kong M; O'Carroll DM
    Nanoscale; 2015 Aug; 7(31):13196-206. PubMed ID: 26098863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localized surface plasmon resonances in gold nano-patches on a gallium nitride substrate.
    D'Antonio P; Inchingolo AV; Perna G; Capozzi V; Stomeo T; De Vittorio M; Magno G; Grande M; Petruzzelli V; D'Orazio A
    Nanotechnology; 2012 Nov; 23(45):455709. PubMed ID: 23089681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct coupling of photonic modes and surface plasmon polaritons observed in 2-photon PEEM.
    Word RC; Fitzgerald JP; Könenkamp R
    Opt Express; 2013 Dec; 21(25):30507-20. PubMed ID: 24514628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.