BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 26866569)

  • 1. The big five of the monocot genomes.
    Haberer G; Mayer KF; Spannagl M
    Curr Opin Plant Biol; 2016 Apr; 30():33-40. PubMed ID: 26866569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Next-Generation Sequencing Promoted the Release of Reference Genomes and Discovered Genome Evolution in Cereal Crops.
    Huang Y; Liu H; Xing Y
    Curr Issues Mol Biol; 2018; 27():37-50. PubMed ID: 28885173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finding the Subcellular Location of Barley, Wheat, Rice and Maize Proteins: The Compendium of Crop Proteins with Annotated Locations (cropPAL).
    Hooper CM; Castleden IR; Aryamanesh N; Jacoby RP; Millar AH
    Plant Cell Physiol; 2016 Jan; 57(1):e9. PubMed ID: 26556651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement.
    Baillo EH; Kimotho RN; Zhang Z; Xu P
    Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31575043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative functional genomics analysis of bHLH gene family in rice, maize and wheat.
    Wei K; Chen H
    BMC Plant Biol; 2018 Nov; 18(1):309. PubMed ID: 30497403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Premeiotic, 24-Nucleotide Reproductive PhasiRNAs Are Abundant in Anthers of Wheat and Barley But Not Rice and Maize.
    Bélanger S; Pokhrel S; Czymmek K; Meyers BC
    Plant Physiol; 2020 Nov; 184(3):1407-1423. PubMed ID: 32917771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops.
    Singh RK; Prasad M
    Protoplasma; 2016 May; 253(3):691-707. PubMed ID: 26660352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic transformation of major cereal crops.
    Ji Q; Xu X; Wang K
    Int J Dev Biol; 2013; 57(6-8):495-508. PubMed ID: 24166432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blurring the boundaries between cereal crops and model plants.
    Borrill P
    New Phytol; 2020 Dec; 228(6):1721-1727. PubMed ID: 31571228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection of reference genes for gene expression studies in virus-infected monocots using quantitative real-time PCR.
    Zhang K; Niu S; Di D; Shi L; Liu D; Cao X; Miao H; Wang X; Han C; Yu J; Li D; Zhang Y
    J Biotechnol; 2013 Oct; 168(1):7-14. PubMed ID: 23954326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Draft genome of the wheat A-genome progenitor Triticum urartu.
    Ling HQ; Zhao S; Liu D; Wang J; Sun H; Zhang C; Fan H; Li D; Dong L; Tao Y; Gao C; Wu H; Li Y; Cui Y; Guo X; Zheng S; Wang B; Yu K; Liang Q; Yang W; Lou X; Chen J; Feng M; Jian J; Zhang X; Luo G; Jiang Y; Liu J; Wang Z; Sha Y; Zhang B; Wu H; Tang D; Shen Q; Xue P; Zou S; Wang X; Liu X; Wang F; Yang Y; An X; Dong Z; Zhang K; Zhang X; Luo MC; Dvorak J; Tong Y; Wang J; Yang H; Li Z; Wang D; Zhang A; Wang J
    Nature; 2013 Apr; 496(7443):87-90. PubMed ID: 23535596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the tertiary gene pool of bread wheat: sequence assembly and analysis of chromosome 5M(g) of Aegilops geniculata.
    Tiwari VK; Wang S; Danilova T; Koo DH; Vrána J; Kubaláková M; Hribova E; Rawat N; Kalia B; Singh N; Friebe B; Doležel J; Akhunov E; Poland J; Sabir JS; Gill BS
    Plant J; 2015 Nov; 84(4):733-46. PubMed ID: 26408103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome wide characterization of barley NAC transcription factors enables the identification of grain-specific transcription factors exclusive for the Poaceae family of monocotyledonous plants.
    Murozuka E; Massange-Sánchez JA; Nielsen K; Gregersen PL; Braumann I
    PLoS One; 2018; 13(12):e0209769. PubMed ID: 30592743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gramene.
    Ware D
    Methods Mol Biol; 2007; 406():315-29. PubMed ID: 18287700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative genomics of grass EST libraries reveals previously uncharacterized splicing events in crop plants.
    Chuang TJ; Yang MY; Lin CC; Hsieh PH; Hung LY
    BMC Plant Biol; 2015 Feb; 15():39. PubMed ID: 25652661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wheat and barley biology: Towards new frontiers.
    Schnurbusch T
    J Integr Plant Biol; 2019 Mar; 61(3):198-203. PubMed ID: 30694021
    [No Abstract]   [Full Text] [Related]  

  • 17. Novel and conserved heat-responsive microRNAs in wheat (Triticum aestivum L.).
    Kumar RR; Pathak H; Sharma SK; Kala YK; Nirjal MK; Singh GP; Goswami S; Rai RD
    Funct Integr Genomics; 2015 May; 15(3):323-48. PubMed ID: 25480755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution.
    Salse J; Bolot S; Throude M; Jouffe V; Piegu B; Quraishi UM; Calcagno T; Cooke R; Delseny M; Feuillet C
    Plant Cell; 2008 Jan; 20(1):11-24. PubMed ID: 18178768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers.
    Shrawat AK; Lörz H
    Plant Biotechnol J; 2006 Nov; 4(6):575-603. PubMed ID: 17309731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large intraspecific haplotype variability at the Rph7 locus results from rapid and recent divergence in the barley genome.
    Scherrer B; Isidore E; Klein P; Kim JS; Bellec A; Chalhoub B; Keller B; Feuillet C
    Plant Cell; 2005 Feb; 17(2):361-74. PubMed ID: 15659632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.