These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 26866569)

  • 21. Targeted mutagenesis of a conserved anther-expressed P450 gene confers male sterility in monocots.
    Cigan AM; Singh M; Benn G; Feigenbutz L; Kumar M; Cho MJ; Svitashev S; Young J
    Plant Biotechnol J; 2017 Mar; 15(3):379-389. PubMed ID: 27614049
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crop reproductive meristems in the genomic era: a brief overview.
    Caselli F; Zanarello F; Kater MM; Battaglia R; Gregis V
    Biochem Soc Trans; 2020 Jun; 48(3):853-865. PubMed ID: 32573650
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wheat, rye, and barley on the cob?
    Lev-Yadun S; Abbo S; Doebley J
    Nat Biotechnol; 2002 Apr; 20(4):337-8. PubMed ID: 11923831
    [No Abstract]   [Full Text] [Related]  

  • 24. Genome-Wide Analysis of the GRAS Gene Family in Barley (
    To VT; Shi Q; Zhang Y; Shi J; Shen C; Zhang D; Cai W
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32423019
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice.
    Dionisio G; Madsen CK; Holm PB; Welinder KG; Jørgensen M; Stoger E; Arcalis E; Brinch-Pedersen H
    Plant Physiol; 2011 Jul; 156(3):1087-100. PubMed ID: 21220762
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strategies for engineering a two-celled C(4) photosynthetic pathway into rice.
    Kajala K; Covshoff S; Karki S; Woodfield H; Tolley BJ; Dionora MJ; Mogul RT; Mabilangan AE; Danila FR; Hibberd JM; Quick WP
    J Exp Bot; 2011 May; 62(9):3001-10. PubMed ID: 21335436
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In silico analysis of microsatellites in organellar genomes of major cereals for understanding their phylogenetic relationships.
    Rajendrakumar P; Biswal AK; Balachandran SM; Sundaram RM
    In Silico Biol; 2008; 8(2):87-104. PubMed ID: 18928198
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots.
    Kumari S; Ware D
    PLoS One; 2013; 8(10):e79011. PubMed ID: 24205361
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Drought stress responses in crops.
    Shanker AK; Maheswari M; Yadav SK; Desai S; Bhanu D; Attal NB; Venkateswarlu B
    Funct Integr Genomics; 2014 Mar; 14(1):11-22. PubMed ID: 24408129
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discovery of cyclotide-like protein sequences in graminaceous crop plants: ancestral precursors of circular proteins?
    Mulvenna JP; Mylne JS; Bharathi R; Burton RA; Shirley NJ; Fincher GB; Anderson MA; Craik DJ
    Plant Cell; 2006 Sep; 18(9):2134-44. PubMed ID: 16935986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeted analysis of orthologous phytochrome A regions of the sorghum, maize, and rice genomes using comparative gene-island sequencing.
    Morishige DT; Childs KL; Moore LD; Mullet JE
    Plant Physiol; 2002 Dec; 130(4):1614-25. PubMed ID: 12481045
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RiceRBP: a database of experimentally identified RNA-binding proteins in Oryza sativa L.
    Morris RT; Doroshenk KA; Crofts AJ; Lewis N; Okita TW; Wyrick JJ
    Plant Sci; 2011 Feb; 180(2):204-11. PubMed ID: 21421362
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Molecular genetic analysis of soriz genome (Sorghum oryzoidum)].
    Galaiev OV; Shevchuk GIu; Dudchenko VV; Syvolap IuM
    Tsitol Genet; 2011; 45(4):9-15. PubMed ID: 21950137
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar.
    Zhang X; Zong J; Liu J; Yin J; Zhang D
    J Integr Plant Biol; 2010 Nov; 52(11):1016-26. PubMed ID: 20977659
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insights into the bamboo genome: syntenic relationships to rice and sorghum.
    Gui YJ; Zhou Y; Wang Y; Wang S; Wang SY; Hu Y; Bo SP; Chen H; Zhou CP; Ma NX; Zhang TZ; Fan LJ
    J Integr Plant Biol; 2010 Nov; 52(11):1008-15. PubMed ID: 20977658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice.
    Mitani N; Chiba Y; Yamaji N; Ma JF
    Plant Cell; 2009 Jul; 21(7):2133-42. PubMed ID: 19574435
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution.
    Feuillet C; Keller B
    Ann Bot; 2002 Jan; 89(1):3-10. PubMed ID: 12096816
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A bonanza for plant genomics.
    Pennisi E
    Science; 1998 Oct; 282(5389):652-4. PubMed ID: 9841420
    [No Abstract]   [Full Text] [Related]  

  • 39. Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley.
    La Rota M; Kantety RV; Yu JK; Sorrells ME
    BMC Genomics; 2005 Feb; 6():23. PubMed ID: 15720707
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Domestication and crop evolution of wheat and barley: Genes, genomics, and future directions.
    Haas M; Schreiber M; Mascher M
    J Integr Plant Biol; 2019 Mar; 61(3):204-225. PubMed ID: 30414305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.