BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 26866591)

  • 1. Identification of Targets of CUG-BP, Elav-Like Family Member 1 (CELF1) Regulation in Embryonic Heart Muscle.
    Blech-Hermoni Y; Dasgupta T; Coram RJ; Ladd AN
    PLoS One; 2016; 11(2):e0149061. PubMed ID: 26866591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of transcripts regulated by CUG-BP, Elav-like family member 1 (CELF1) in primary embryonic cardiomyocytes by RNA-seq.
    Blech-Hermoni Y; Ladd AN
    Genom Data; 2015 Dec; 6():74-76. PubMed ID: 26366374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins.
    Wang ET; Ward AJ; Cherone JM; Giudice J; Wang TT; Treacy DJ; Lambert NJ; Freese P; Saxena T; Cooper TA; Burge CB
    Genome Res; 2015 Jun; 25(6):858-71. PubMed ID: 25883322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CUG-BP, Elav-like family member 1 (CELF1) is required for normal myofibrillogenesis, morphogenesis, and contractile function in the embryonic heart.
    Blech-Hermoni Y; Sullivan CB; Jenkins MW; Wessely O; Ladd AN
    Dev Dyn; 2016 Aug; 245(8):854-73. PubMed ID: 27144987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The CELF family of RNA binding proteins is implicated in cell-specific and developmentally regulated alternative splicing.
    Ladd AN; Charlet N; Cooper TA
    Mol Cell Biol; 2001 Feb; 21(4):1285-96. PubMed ID: 11158314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternative splicing of the neurofibromatosis type 1 pre-mRNA is regulated by the muscleblind-like proteins and the CUG-BP and ELAV-like factors.
    Fleming VA; Geng C; Ladd AN; Lou H
    BMC Mol Biol; 2012 Dec; 13():35. PubMed ID: 23227900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic balance between activation and repression regulates pre-mRNA alternative splicing during heart development.
    Ladd AN; Stenberg MG; Swanson MS; Cooper TA
    Dev Dyn; 2005 Jul; 233(3):783-93. PubMed ID: 15830352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of alternative untranslated regions within the mRNA of the CELF1 splicing factor affects its expression.
    Kajdasz A; Niewiadomska D; Sekrecki M; Sobczak K
    Sci Rep; 2022 Jan; 12(1):190. PubMed ID: 34996980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased nuclear but not cytoplasmic activities of CELF1 protein leads to muscle wasting.
    Cox DC; Guan X; Xia Z; Cooper TA
    Hum Mol Genet; 2020 Jun; 29(10):1729-1744. PubMed ID: 32412585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CELF1 preferentially binds to exon-intron boundary and regulates alternative splicing in HeLa cells.
    Xia H; Chen D; Wu Q; Wu G; Zhou Y; Zhang Y; Zhang L
    Biochim Biophys Acta Gene Regul Mech; 2017 Sep; 1860(9):911-921. PubMed ID: 28733224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neonatal cardiac dysfunction and transcriptome changes caused by the absence of Celf1.
    Giudice J; Xia Z; Li W; Cooper TA
    Sci Rep; 2016 Oct; 6():35550. PubMed ID: 27759042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CELF1 Mediates Connexin 43 mRNA Degradation in Dilated Cardiomyopathy.
    Chang KT; Cheng CF; King PC; Liu SY; Wang GS
    Circ Res; 2017 Oct; 121(10):1140-1152. PubMed ID: 28874395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversity and conservation of CELF1 and CELF2 RNA and protein expression patterns during embryonic development.
    Blech-Hermoni Y; Stillwagon SJ; Ladd AN
    Dev Dyn; 2013 Jun; 242(6):767-77. PubMed ID: 23468433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HNRNPA1-induced spliceopathy in a transgenic mouse model of myotonic dystrophy.
    Li M; Zhuang Y; Batra R; Thomas JD; Li M; Nutter CA; Scotti MM; Carter HA; Wang ZJ; Huang XS; Pu CQ; Swanson MS; Xie W
    Proc Natl Acad Sci U S A; 2020 Mar; 117(10):5472-5477. PubMed ID: 32086392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A positive feedback regulation of Heme oxygenase 1 by CELF1 in cardiac myoblast cells.
    Liu Y; Wang H; Wang J; Wei B; Zhang X; Zhang M; Cao D; Dai J; Wang Z; Nyirimigabo E; Ji G
    Biochim Biophys Acta Gene Regul Mech; 2019 Feb; 1862(2):209-218. PubMed ID: 30508596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene Expression Analyses during Spontaneous Reversal of Cardiomyopathy in Mice with Repressed Nuclear CUG-BP, Elav-Like Family (CELF) Activity in Heart Muscle.
    Dasgupta T; Coram RJ; Stillwagon SJ; Ladd AN
    PLoS One; 2015; 10(4):e0124462. PubMed ID: 25894229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene expression analyses implicate an alternative splicing program in regulating contractile gene expression and serum response factor activity in mice.
    Dasgupta T; Stillwagon SJ; Ladd AN
    PLoS One; 2013; 8(2):e56590. PubMed ID: 23437181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevation of RNA-binding protein CUGBP1 is an early event in an inducible heart-specific mouse model of myotonic dystrophy.
    Wang GS; Kearney DL; De Biasi M; Taffet G; Cooper TA
    J Clin Invest; 2007 Oct; 117(10):2802-11. PubMed ID: 17823658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long noncoding RNA TUG1 is downregulated in non-small cell lung cancer and can regulate CELF1 on binding to PRC2.
    Lin PC; Huang HD; Chang CC; Chang YS; Yen JC; Lee CC; Chang WH; Liu TC; Chang JG
    BMC Cancer; 2016 Aug; 16():583. PubMed ID: 27485439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CELF1 contributes to aberrant alternative splicing patterns in the type 1 diabetic heart.
    Belanger K; Nutter CA; Li J; Tasnim S; Liu P; Yu P; Kuyumcu-Martinez MN
    Biochem Biophys Res Commun; 2018 Sep; 503(4):3205-3211. PubMed ID: 30158053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.