These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 26866939)
1. Large Deformation Mechanisms, Plasticity, and Failure of an Individual Collagen Fibril With Different Mineral Content. Depalle B; Qin Z; Shefelbine SJ; Buehler MJ J Bone Miner Res; 2016 Feb; 31(2):380-90. PubMed ID: 26866939 [TBL] [Abstract][Full Text] [Related]
2. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils. Depalle B; Qin Z; Shefelbine SJ; Buehler MJ J Mech Behav Biomed Mater; 2015 Dec; 52():1-13. PubMed ID: 25153614 [TBL] [Abstract][Full Text] [Related]
3. Role of intrafibrillar collagen mineralization in defining the compressive properties of nascent bone. Nair AK; Gautieri A; Buehler MJ Biomacromolecules; 2014 Jul; 15(7):2494-500. PubMed ID: 24892376 [TBL] [Abstract][Full Text] [Related]
4. Mineral and cross-linking in collagen fibrils: The mechanical behavior of bone tissue at the nano-scale. Kamml J; Acevedo C; Kammer DS J Mech Behav Biomed Mater; 2024 Nov; 159():106697. PubMed ID: 39182252 [TBL] [Abstract][Full Text] [Related]
5. Compressive behaviour of uniaxially aligned individual mineralised collagen fibres at the micro- and nanoscale. Groetsch A; Gourrier A; Schwiedrzik J; Sztucki M; Beck RJ; Shephard JD; Michler J; Zysset PK; Wolfram U Acta Biomater; 2019 Apr; 89():313-329. PubMed ID: 30858052 [TBL] [Abstract][Full Text] [Related]
6. Mineral and cross-linking in collagen fibrils: The mechanical behavior of bone tissue at the nano-scale. Kamml J; Acevedo C; Kammer DS ArXiv; 2024 Mar; ():. PubMed ID: 38562451 [TBL] [Abstract][Full Text] [Related]
7. Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone. Gupta HS; Krauss S; Kerschnitzki M; Karunaratne A; Dunlop JW; Barber AH; Boesecke P; Funari SS; Fratzl P J Mech Behav Biomed Mater; 2013 Dec; 28():366-82. PubMed ID: 23707600 [TBL] [Abstract][Full Text] [Related]
8. Elastic deformation of mineralized collagen fibrils: an equivalent inclusion based composite model. Akkus O J Biomech Eng; 2005 Jun; 127(3):383-90. PubMed ID: 16060345 [TBL] [Abstract][Full Text] [Related]
10. Effects of hydration and mineralization on the deformation mechanisms of collagen fibrils in bone at the nanoscale. Fielder M; Nair AK Biomech Model Mechanobiol; 2019 Feb; 18(1):57-68. PubMed ID: 30088113 [TBL] [Abstract][Full Text] [Related]
11. The influence of AGEs and enzymatic cross-links on the mechanical properties of collagen fibrils. Kamml J; Ke CY; Acevedo C; Kammer DS J Mech Behav Biomed Mater; 2023 Jul; 143():105870. PubMed ID: 37156073 [TBL] [Abstract][Full Text] [Related]
12. Mineralized Collagen Fibrils: An Essential Component in Determining the Mechanical Behavior of Cortical Bone. Al-Qudsy L; Hu YW; Xu H; Yang PF ACS Biomater Sci Eng; 2023 May; 9(5):2203-2219. PubMed ID: 37075172 [TBL] [Abstract][Full Text] [Related]
13. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Gautieri A; Vesentini S; Redaelli A; Buehler MJ Nano Lett; 2011 Feb; 11(2):757-66. PubMed ID: 21207932 [TBL] [Abstract][Full Text] [Related]
14. A new model to simulate the elastic properties of mineralized collagen fibril. Yuan F; Stock SR; Haeffner DR; Almer JD; Dunand DC; Brinson LC Biomech Model Mechanobiol; 2011 Apr; 10(2):147-60. PubMed ID: 20521160 [TBL] [Abstract][Full Text] [Related]
15. Cooperative deformation of mineral and collagen in bone at the nanoscale. Gupta HS; Seto J; Wagermaier W; Zaslansky P; Boesecke P; Fratzl P Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17741-6. PubMed ID: 17095608 [TBL] [Abstract][Full Text] [Related]
17. Deformation regimes of collagen fibrils in cortical bone revealed by in situ morphology and elastic modulus observations under mechanical loading. Yang PF; Nie XT; Zhao DD; Wang Z; Ren L; Xu HY; Rittweger J; Shang P J Mech Behav Biomed Mater; 2018 Mar; 79():115-121. PubMed ID: 29291465 [TBL] [Abstract][Full Text] [Related]
18. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks. Wang Y; Ural A J Mech Behav Biomed Mater; 2019 Dec; 100():103361. PubMed ID: 31493689 [TBL] [Abstract][Full Text] [Related]
19. Are mineralized tissues open crystal foams reinforced by crosslinked collagen? Some energy arguments. Hellmich Ch; Ulm FJ J Biomech; 2002 Sep; 35(9):1199-1212. PubMed ID: 12163310 [TBL] [Abstract][Full Text] [Related]
20. A coarse-grained molecular dynamics investigation of the role of mineral arrangement on the mechanical properties of mineralized collagen fibrils. Tavakol M; Vaughan TJ J R Soc Interface; 2023 Jan; 20(198):20220803. PubMed ID: 36695019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]