BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 26867014)

  • 1. Muscle Synergies Heavily Influence the Neural Control of Arm Endpoint Stiffness and Energy Consumption.
    Inouye JM; Valero-Cuevas FJ
    PLoS Comput Biol; 2016 Feb; 12(2):e1004737. PubMed ID: 26867014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical constraints on the feedforward regulation of endpoint stiffness.
    Hu X; Murray WM; Perreault EJ
    J Neurophysiol; 2012 Oct; 108(8):2083-91. PubMed ID: 22832565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A modular neural model of motor synergies.
    Byadarhaly KV; Perdoor MC; Minai AA
    Neural Netw; 2012 Aug; 32():96-108. PubMed ID: 22394689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the biomechanical constraints on the feedforward control of endpoint stiffness.
    Hu X; Murray WM; Perreault EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4498-501. PubMed ID: 21095780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superposition and modulation of muscle synergies for reaching in response to a change in target location.
    d'Avella A; Portone A; Lacquaniti F
    J Neurophysiol; 2011 Dec; 106(6):2796-812. PubMed ID: 21880939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pilot study on quantitative assessment of muscle imbalance: differences of muscle synergies, equilibrium-point trajectories, and endpoint stiffness in normal and pathological upper-limb movements.
    Oku T; Uno K; Nishi T; Kageyama M; Phatiwuttipat P; Koba K; Yamashita Y; Murakami K; Uemura M; Hirai H; Miyazaki F; Naritomi H
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5784-7. PubMed ID: 25571310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inter-joint coupling and joint angle synergies of human catching movements.
    Bockemühl T; Troje NF; Dürr V
    Hum Mov Sci; 2010 Feb; 29(1):73-93. PubMed ID: 19945187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consequences of biomechanically constrained tasks in the design and interpretation of synergy analyses.
    Steele KM; Tresch MC; Perreault EJ
    J Neurophysiol; 2015 Apr; 113(7):2102-13. PubMed ID: 25589591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of self-selected postures to regulate multi-joint stiffness during unconstrained tasks.
    Trumbower RD; Krutky MA; Yang BS; Perreault EJ
    PLoS One; 2009; 4(5):e5411. PubMed ID: 19412540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A limited set of muscle synergies for force control during a postural task.
    Ting LH; Macpherson JM
    J Neurophysiol; 2005 Jan; 93(1):609-13. PubMed ID: 15342720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A myokinetic arm model for estimating joint torque and stiffness from EMG signals during maintained posture.
    Shin D; Kim J; Koike Y
    J Neurophysiol; 2009 Jan; 101(1):387-401. PubMed ID: 19005007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How does the CNS control arm reaching movements? Introducing a hierarchical nonlinear predictive control organization based on the idea of muscle synergies.
    Dehghani S; Bahrami F
    PLoS One; 2020; 15(2):e0228726. PubMed ID: 32023300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle short-range stiffness can be used to estimate the endpoint stiffness of the human arm.
    Hu X; Murray WM; Perreault EJ
    J Neurophysiol; 2011 Apr; 105(4):1633-41. PubMed ID: 21289133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of muscle synergies for multiple forearm movements under variant force and arm position constraints.
    Geng Y; Deng H; Samuel OW; Cheung V; Xu L; Li G
    J Neural Eng; 2020 Apr; 17(2):026015. PubMed ID: 32126534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of synergies arising from a theory of optimal motor behavior.
    Chhabra M; Jacobs RA
    Neural Comput; 2006 Oct; 18(10):2320-42. PubMed ID: 16907628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of phasic and tonic muscle synergies with reaching direction and speed.
    d'Avella A; Fernandez L; Portone A; Lacquaniti F
    J Neurophysiol; 2008 Sep; 100(3):1433-54. PubMed ID: 18596190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of neuromuscular synergies in natural upper-arm movements.
    Sabatini AM
    Biol Cybern; 2002 Apr; 86(4):253-62. PubMed ID: 11956806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endpoint stiffness of the arm is directionally tuned to instability in the environment.
    Franklin DW; Liaw G; Milner TE; Osu R; Burdet E; Kawato M
    J Neurosci; 2007 Jul; 27(29):7705-16. PubMed ID: 17634365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle Synergies Modify Optimization Estimates of Joint Stiffness During Walking.
    Shourijeh MS; Fregly BJ
    J Biomech Eng; 2020 Jan; 142(1):. PubMed ID: 31343670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying representative synergy matrices for describing muscular activation patterns during multidirectional reaching in the horizontal plane.
    Muceli S; Boye AT; d'Avella A; Farina D
    J Neurophysiol; 2010 Mar; 103(3):1532-42. PubMed ID: 20071634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.