These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26867209)

  • 1. Healthy and unhealthy red blood cell detection in human blood smears using neural networks.
    Elsalamony HA
    Micron; 2016 Apr; 83():32-41. PubMed ID: 26867209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative microscopy approach for shape-based erythrocytes characterization in anaemia.
    Das DK; Chakraborty C; Mitra B; Maiti AK; Ray AK
    J Microsc; 2013 Feb; 249(2):136-49. PubMed ID: 23252834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and red blood cell automated counting from blood smear images using computer-aided system.
    Acharya V; Kumar P
    Med Biol Eng Comput; 2018 Mar; 56(3):483-489. PubMed ID: 28815426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diagnosis support of sickle cell anemia by classifying red blood cell shape in peripheral blood images.
    Delgado-Font W; Escobedo-Nicot M; González-Hidalgo M; Herold-Garcia S; Jaume-I-Capó A; Mir A
    Med Biol Eng Comput; 2020 Jun; 58(6):1265-1284. PubMed ID: 32222951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abnormal red blood cells detection using adaptive neuro-fuzzy system.
    Babazadeh Khameneh N; Arabalibeik H; Salehian P; Setayeshi S
    Stud Health Technol Inform; 2012; 173():30-4. PubMed ID: 22356952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated system for characterization and classification of malaria-infected stages using light microscopic images of thin blood smears.
    Das DK; Maiti AK; Chakraborty C
    J Microsc; 2015 Mar; 257(3):238-52. PubMed ID: 25523795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional counting of morphologically normal human red blood cells via digital holographic microscopy.
    Yi F; Moon I; Lee YH
    J Biomed Opt; 2015 Jan; 20(1):016005. PubMed ID: 25567613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic detection and quantification of WBCs and RBCs using iterative structured circle detection algorithm.
    Alomari YM; Sheikh Abdullah SN; Zaharatul Azma R; Omar K
    Comput Math Methods Med; 2014; 2014():979302. PubMed ID: 24803955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A deep convolutional neural network for classification of red blood cells in sickle cell anemia.
    Xu M; Papageorgiou DP; Abidi SZ; Dao M; Zhao H; Karniadakis GE
    PLoS Comput Biol; 2017 Oct; 13(10):e1005746. PubMed ID: 29049291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diagnosis of Diabetes Mellitus by Extraction of Morphological Features of Red Blood Cells Using an Artificial Neural Network.
    Palanisamy V; Mariamichael A
    Exp Clin Endocrinol Diabetes; 2016 Oct; 124(9):548-556. PubMed ID: 27355190
    [No Abstract]   [Full Text] [Related]  

  • 11. Erythrocyte shape classification using integral-geometry-based methods.
    Gual-Arnau X; Herold-García S; Simó A
    Med Biol Eng Comput; 2015 Jul; 53(7):623-33. PubMed ID: 25773368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of red blood cells as normal, sickle, or other abnormal, using a single image analysis feature.
    Wheeless LL; Robinson RD; Lapets OP; Cox C; Rubio A; Weintraub M; Benjamin LJ
    Cytometry; 1994 Oct; 17(2):159-66. PubMed ID: 7835166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic classification of cells in microscopic fecal images using convolutional neural networks.
    Du X; Liu L; Wang X; Ni G; Zhang J; Hao R; Liu J; Liu Y
    Biosci Rep; 2019 Apr; 39(4):. PubMed ID: 30872411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural networks and blood cell identification.
    Micheli-Tzanakou E; Sheikh H; Zhu B
    J Med Syst; 1997 Aug; 21(4):201-10. PubMed ID: 9442434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Ensemble Rule Learning Approach for Automated Morphological Classification of Erythrocytes.
    Maity M; Mungle T; Dhane D; Maiti AK; Chakraborty C
    J Med Syst; 2017 Apr; 41(4):56. PubMed ID: 28247304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human red blood cell recognition enhancement with three-dimensional morphological features obtained by digital holographic imaging.
    Jaferzadeh K; Moon I
    J Biomed Opt; 2016 Dec; 21(12):126015. PubMed ID: 28006044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1 Million Segmented Red Blood Cells With 240 K Classified in 9 Shapes and 47 K Patches of 25 Manual Blood Smears.
    Elsafty A; Soliman A; Ahmed Y
    Sci Data; 2024 Jul; 11(1):722. PubMed ID: 38956115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Review of Automated Methods for the Detection of Sickle Cell Disease.
    Das PK; Meher S; Panda R; Abraham A
    IEEE Rev Biomed Eng; 2020; 13():309-324. PubMed ID: 31107662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superiority of neural networks over discriminant functions for thalassemia minor screening of red blood cell microcytosis.
    Erler BS; Vitagliano P; Lee S
    Arch Pathol Lab Med; 1995 Apr; 119(4):350-4. PubMed ID: 7726727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the Red Blood Cell Advanced Software Application on the CellaVision DM96.
    Criel M; Godefroid M; Deckers B; Devos H; Cauwelier B; Emmerechts J
    Int J Lab Hematol; 2016 Aug; 38(4):366-74. PubMed ID: 27199257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.