BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 26867620)

  • 21. Identification of alternative splicing events regulated by an Arabidopsis serine/arginine-like protein, atSR45a, in response to high-light stress using a tiling array.
    Yoshimura K; Mori T; Yokoyama K; Koike Y; Tanabe N; Sato N; Takahashi H; Maruta T; Shigeoka S
    Plant Cell Physiol; 2011 Oct; 52(10):1786-805. PubMed ID: 21862516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes.
    James AB; Syed NH; Bordage S; Marshall J; Nimmo GA; Jenkins GI; Herzyk P; Brown JW; Nimmo HG
    Plant Cell; 2012 Mar; 24(3):961-81. PubMed ID: 22408072
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unraveling the circadian clock in Arabidopsis.
    Wang X; Ma L
    Plant Signal Behav; 2013 Feb; 8(2):e23014. PubMed ID: 23221775
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alternative mRNA processing increases the complexity of microRNA-based gene regulation in Arabidopsis.
    Yang X; Zhang H; Li L
    Plant J; 2012 May; 70(3):421-31. PubMed ID: 22247970
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of Arabidopsis Transcriptional Regulators by Yeast One-Hybrid Screens Using a Transcription Factor ORFeome.
    Breton G; Kay SA; Pruneda-Paz JL
    Methods Mol Biol; 2016; 1398():107-18. PubMed ID: 26867619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. XAP5 CIRCADIAN TIMEKEEPER specifically modulates 3' splice site recognition and is important for circadian clock regulation partly by alternative splicing of LHY and TIC.
    Liu L; Li X; Yuan L; Zhang G; Gao H; Xu X; Zhao H
    Plant Physiol Biochem; 2022 Feb; 172():151-157. PubMed ID: 35065375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From a repressilator-based circadian clock mechanism to an external coincidence model responsible for photoperiod and temperature control of plant architecture in Arabodopsis thaliana.
    Yamashino T
    Biosci Biotechnol Biochem; 2013; 77(1):10-6. PubMed ID: 23291766
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SKIP regulates environmental fitness and floral transition by forming two distinct complexes in Arabidopsis.
    Li Y; Yang J; Shang X; Lv W; Xia C; Wang C; Feng J; Cao Y; He H; Li L; Ma L
    New Phytol; 2019 Oct; 224(1):321-335. PubMed ID: 31209881
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SKIP Confers Osmotic Tolerance during Salt Stress by Controlling Alternative Gene Splicing in Arabidopsis.
    Feng J; Li J; Gao Z; Lu Y; Yu J; Zheng Q; Yan S; Zhang W; He H; Ma L; Zhu Z
    Mol Plant; 2015 Jul; 8(7):1038-52. PubMed ID: 25617718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phytochrome controls alternative splicing to mediate light responses in Arabidopsis.
    Shikata H; Hanada K; Ushijima T; Nakashima M; Suzuki Y; Matsushita T
    Proc Natl Acad Sci U S A; 2014 Dec; 111(52):18781-6. PubMed ID: 25512548
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The spliceosome assembly factor GEMIN2 attenuates the effects of temperature on alternative splicing and circadian rhythms.
    Schlaen RG; Mancini E; Sanchez SE; Perez-Santángelo S; Rugnone ML; Simpson CG; Brown JW; Zhang X; Chernomoretz A; Yanovsky MJ
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9382-7. PubMed ID: 26170331
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wheels within wheels: the plant circadian system.
    Hsu PY; Harmer SL
    Trends Plant Sci; 2014 Apr; 19(4):240-9. PubMed ID: 24373845
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutation of Arabidopsis spliceosomal timekeeper locus1 causes circadian clock defects.
    Jones MA; Williams BA; McNicol J; Simpson CG; Brown JW; Harmer SL
    Plant Cell; 2012 Oct; 24(10):4066-82. PubMed ID: 23110899
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RRM domain of Arabidopsis splicing factor SF1 is important for pre-mRNA splicing of a specific set of genes.
    Lee KC; Jang YH; Kim SK; Park HY; Thu MP; Lee JH; Kim JK
    Plant Cell Rep; 2017 Jul; 36(7):1083-1095. PubMed ID: 28401337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. REVEILLE2 thermosensitive splicing: a molecular basis for the integration of nocturnal temperature information by the Arabidopsis circadian clock.
    James AB; Sharples C; Laird J; Armstrong EM; Guo W; Tzioutziou N; Zhang R; Brown JWS; Nimmo HG; Jones MA
    New Phytol; 2024 Jan; 241(1):283-297. PubMed ID: 37897048
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessing Protein Stability Under Different Light and Circadian Conditions.
    Kiba T; Henriques R
    Methods Mol Biol; 2016; 1398():141-52. PubMed ID: 26867622
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The circadian clock goes genomic.
    Staiger D; Shin J; Johansson M; Davis SJ
    Genome Biol; 2013 Jun; 14(6):208. PubMed ID: 23796230
    [TBL] [Abstract][Full Text] [Related]  

  • 38. XAP5 CIRCADIAN TIMEKEEPER regulates RNA splicing and the circadian clock by genetically separable pathways.
    Zhang H; Kumimoto RW; Anver S; Harmer SL
    Plant Physiol; 2023 Jul; 192(3):2492-2506. PubMed ID: 36974904
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7.
    Meyer K; Köster T; Nolte C; Weinholdt C; Lewinski M; Grosse I; Staiger D
    Genome Biol; 2017 Oct; 18(1):204. PubMed ID: 29084609
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Global transcriptome analysis reveals circadian control of splicing events in Arabidopsis thaliana.
    Romanowski A; Schlaen RG; Perez-Santangelo S; Mancini E; Yanovsky MJ
    Plant J; 2020 Jul; 103(2):889-902. PubMed ID: 32314836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.