These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26867627)

  • 1. Generating Targeted Gene Knockout Lines in Physcomitrella patens to Study Evolution of Stress-Responsive Mechanisms.
    Maronova M; Kalyna M
    Methods Mol Biol; 2016; 1398():221-34. PubMed ID: 26867627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plastid Transformation in Physcomitrium (Physcomitrella) patens: An Update.
    Sugita M
    Methods Mol Biol; 2021; 2317():321-331. PubMed ID: 34028779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coexistence of plant and algal energy dissipation mechanisms in the moss Physcomitrella patens.
    Gerotto C; Alboresi A; Giacometti GM; Bassi R; Morosinotto T
    New Phytol; 2012 Nov; 196(3):763-773. PubMed ID: 23005032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plastid transformation in Physcomitrella patens.
    Sugita M
    Methods Mol Biol; 2014; 1132():427-37. PubMed ID: 24599872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved and highly standardised transformation procedure allows efficient production of single and multiple targeted gene-knockouts in a moss, Physcomitrella patens.
    Hohe A; Egener T; Lucht JM; Holtorf H; Reinhard C; Schween G; Reski R
    Curr Genet; 2004 Jan; 44(6):339-47. PubMed ID: 14586556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Knocking out the wall: protocols for gene targeting in Physcomitrella patens.
    Roberts AW; Dimos CS; Budziszek MJ; Goss CA; Lai V
    Methods Mol Biol; 2011; 715():273-90. PubMed ID: 21222091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted Gene Knockouts by Protoplast Transformation in the Moss
    Zhu L
    Front Genome Ed; 2021; 3():719087. PubMed ID: 34977859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene function analysis by artificial microRNAs in Physcomitrella patens.
    Khraiwesh B; Fattash I; Arif MA; Frank W
    Methods Mol Biol; 2011; 744():57-79. PubMed ID: 21533686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein kinase PpCIPK1 modulates plant salt tolerance in Physcomitrella patens.
    Xiao F; Li X; He J; Zhao J; Wu G; Gong Q; Zhou H; Lin H
    Plant Mol Biol; 2021 Apr; 105(6):685-696. PubMed ID: 33543389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient polyethylene glycol (PEG) mediated transformation of the moss Physcomitrella patens.
    Liu YC; Vidali L
    J Vis Exp; 2011 Apr; (50):. PubMed ID: 21540817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MSH1 maintains organelle genome stability and genetically interacts with RECA and RECG in the moss Physcomitrella patens.
    Odahara M; Kishita Y; Sekine Y
    Plant J; 2017 Aug; 91(3):455-465. PubMed ID: 28407383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformation of the moss Physcomitrella patens using direct DNA uptake by protoplasts.
    Cove DJ; Perroud PF; Charron AJ; McDaniel SF; Khandelwal A; Quatrano RS
    Cold Spring Harb Protoc; 2009 Feb; 2009(2):pdb.prot5143. PubMed ID: 20147073
    [No Abstract]   [Full Text] [Related]  

  • 13. The moss Physcomitrella patens: a novel model system for plant development and genomic studies.
    Cove DJ; Perroud PF; Charron AJ; McDaniel SF; Khandelwal A; Quatrano RS
    Cold Spring Harb Protoc; 2009 Feb; 2009(2):pdb.emo115. PubMed ID: 20147063
    [No Abstract]   [Full Text] [Related]  

  • 14. Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts.
    Khraiwesh B; Ossowski S; Weigel D; Reski R; Frank W
    Plant Physiol; 2008 Oct; 148(2):684-93. PubMed ID: 18753280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Knocking Out the Wall: Revised Protocols for Gene Targeting in Physcomitrella patens.
    Roberts AW; Dimos CS; Budziszek MJ; Goss CA; Lai V; Chaves AM
    Methods Mol Biol; 2020; 2149():125-144. PubMed ID: 32617933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High frequency of phenotypic deviations in Physcomitrella patens plants transformed with a gene-disruption library.
    Egener T; Granado J; Guitton MC; Hohe A; Holtorf H; Lucht JM; Rensing SA; Schlink K; Schulte J; Schween G; Zimmermann S; Duwenig E; Rak B; Reski R
    BMC Plant Biol; 2002 Jul; 2():6. PubMed ID: 12123528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transformation of the moss Physcomitrella patens using T-DNA mutagenesis.
    Cove DJ; Perroud PF; Charron AJ; McDaniel SF; Khandelwal A; Quatrano RS
    Cold Spring Harb Protoc; 2009 Feb; 2009(2):pdb.prot5144. PubMed ID: 20147074
    [No Abstract]   [Full Text] [Related]  

  • 18. A new moss genetics: targeted mutagenesis in Physcomitrella patens.
    Schaefer DG
    Annu Rev Plant Biol; 2002; 53():477-501. PubMed ID: 12221986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted gene knockouts reveal overlapping functions of the five Physcomitrella patens FtsZ isoforms in chloroplast division, chloroplast shaping, cell patterning, plant development, and gravity sensing.
    Martin A; Lang D; Hanke ST; Mueller SJ; Sarnighausen E; Vervliet-Scheebaum M; Reski R
    Mol Plant; 2009 Nov; 2(6):1359-72. PubMed ID: 19946616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of taxa-4(5),11(12)-diene by transgenic Physcomitrella patens.
    Anterola A; Shanle E; Perroud PF; Quatrano R
    Transgenic Res; 2009 Aug; 18(4):655-60. PubMed ID: 19241134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.