BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 26867652)

  • 1. Radioactive by-products of a self-shielded cyclotron and the liquid target system for F-18 routine production.
    Kambali I; Suryanto H; Parwanto
    Australas Phys Eng Sci Med; 2016 Jun; 39(2):403-12. PubMed ID: 26867652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutron measurements in the vicinity of a self-shielded PET cyclotron.
    Hertel NE; Shannon MP; Wang ZL; Valenzano MP; Mengesha W; Crowe RJ
    Radiat Prot Dosimetry; 2004; 108(3):255-61. PubMed ID: 15031447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiation safety management of residual long-lived radioactivity distributed in an inner concrete wall of a medical cyclotron room.
    Yamaguchi I; Kimura K; Fujibuchi T; Takahashi Y; Saito K; Otake H
    Radiat Prot Dosimetry; 2011 Jul; 146(1-3):167-9. PubMed ID: 21498855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of neutron induced radioactivity in the concrete walls of a PET cyclotron vault room with MCNPX.
    Martínez-Serrano JJ; Díez de los Ríos A
    Med Phys; 2010 Nov; 37(11):6015-21. PubMed ID: 21158313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of thermal neutron flux around a PET cyclotron.
    Ogata Y; Ishigure N; Mochizuki S; Ito K; Hatano K; Abe J; Miyahara H; Masumoto K; Nakamura H
    Health Phys; 2011 May; 100 Suppl 2():S60-6. PubMed ID: 21451309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of residual long-lived radioactivity in the inner concrete walls of a compact medical cyclotron vault room.
    Fujibuchi T; Nohtomi A; Baba S; Sasaki M; Komiya I; Umedzu Y; Honda H
    Ann Nucl Med; 2015 Jan; 29(1):84-90. PubMed ID: 25311501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of neutron fluxes in an 18-MeV unshielded cyclotron room and a 16.5-MeV self-shielded cyclotron room.
    Fujibuchi T; Horitsugi G; Yamaguchi I; Eto A; Iwamoto Y; Obara S; Iimori T; Masuda Y; Watanabe H; Hatazawa J
    Radiol Phys Technol; 2012 Jul; 5(2):156-65. PubMed ID: 22447045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pre-discard estimation of radioactivated materials in positron emission tomography cyclotron systems and concrete walls of a cyclotron vault.
    Wagatsuma K; Ishiwata K; Nobuhara F; Koumura I; Kunugi M; Oda K; Miwa K; Toyohara J; Ishii K
    Med Phys; 2019 May; 46(5):2457-2467. PubMed ID: 30870578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of the residual radioactivity induced in the front foil of a target assembly in a modern medical cyclotron.
    O'Donnell RG; León Vintró L; Duffy GJ; Mitchell PI
    Appl Radiat Isot; 2004; 60(2-4):539-42. PubMed ID: 14987699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Evaluation of Radio-activated Compounds Produced in the Walls and Adjacent Areas of a Small Medical Cyclotron].
    Saito K; Takahashi Y; Yamaguchi I; Kimura K; Kanzaki T; Shimada H; Otake H; Oriuchi N; Endo K
    Igaku Butsuri; 2009; 29(2):29-34. PubMed ID: 21979783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the neutron field in the vicinity of an unshielded PET cyclotron.
    Méndez R; Iñiguez MP; Martí-Climent JM; Peñuelas I; Vega-Carrillo HR; Barquero R
    Phys Med Biol; 2005 Nov; 50(21):5141-52. PubMed ID: 16237246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Source term calculation and validation for
    Konheiser J; Müller SE; Magin A; Naumann B; Ferrari A
    J Radiol Prot; 2019 Sep; 39(3):906-919. PubMed ID: 31216517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting induced activity in the Havar foils of the (18)F production targets of a PET cyclotron and derived radiological risk.
    Martinez-Serrano JJ; Diez de Los Rios A
    Health Phys; 2014 Aug; 107(2):103-10. PubMed ID: 24978281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radionuclide impurities in proton-irradiated [18O]H2O for the production of 18F-: activities and distribution in the [18F]FDG synthesis process.
    Bowden L; Vintró LL; Mitchell PI; O'Donnell RG; Seymour AM; Duffy GJ
    Appl Radiat Isot; 2009 Feb; 67(2):248-55. PubMed ID: 19111472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of thermal neutron fluence distribution with use of 23Na radioactivation around a medical compact cyclotron.
    Fujibuchi T; Yamaguchi I; Kasahara T; Iimori T; Masuda Y; Kimura K; Watanabe H; Isobe T; Sakae T
    Radiol Phys Technol; 2009 Jul; 2(2):159-65. PubMed ID: 20821115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A theoretical study for the production of
    Tatari M; Dehghan Manshadi Z; Naik H
    Appl Radiat Isot; 2022 Oct; 188():110347. PubMed ID: 35792354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary production of 211At at the Texas A&M University Cyclotron Institute.
    Martin TM; Bhakta V; Al-Harbi A; Hackemack M; Tabacaru G; Tribble R; Shankar S; Akabani G
    Health Phys; 2014 Jul; 107(1):1-9. PubMed ID: 24849899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decay characteristics of the induced radioactivity in the target cave of a medical cyclotron.
    Mukherjee B
    Appl Radiat Isot; 1997 Jun; 48(6):735-8. PubMed ID: 9204525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decommissioning procedures for an 11 MeV self-shielded medical cyclotron after 16 years of working time.
    Calandrino R; del Vecchio A; Savi A; Todde S; Griffoni V; Brambilla S; Parisi R; Simone G; Fazio F
    Health Phys; 2006 Jun; 90(6):588-96. PubMed ID: 16691108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NEUTRON FLUX DISTRIBUTION IN THE RADIOISOTOPES TARGET ROOMS AND MAZE IN SYRIAN CYCLOTRON.
    Haddad K; Al Rayyes AH; Al-Homyed A
    Radiat Prot Dosimetry; 2019 Dec; 185(3):371-375. PubMed ID: 31034057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.