BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

732 related articles for article (PubMed ID: 26867689)

  • 21. Nutrient removal by Chlorella vulgaris F1068 under cetyltrimethyl ammonium bromide induced hormesis.
    Zhou Q; Li F; Ge F; Liu N; Kuang Y
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19450-60. PubMed ID: 27381355
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Urban nutrient recovery from fresh human urine through cultivation of Chlorella sorokiniana.
    Zhang S; Lim CY; Chen CL; Liu H; Wang JY
    J Environ Manage; 2014 Dec; 145():129-36. PubMed ID: 25016102
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of municipal wastewaters at various stages of treatment process as potential growth media for Chlorella sorokiniana under different modes of cultivation.
    Ramsundar P; Guldhe A; Singh P; Bux F
    Bioresour Technol; 2017 Mar; 227():82-92. PubMed ID: 28013140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Growth of Chlorella vulgaris and nutrient removal in the wastewater in response to intermittent carbon dioxide.
    Liu X; Ying K; Chen G; Zhou C; Zhang W; Zhang X; Cai Z; Holmes T; Tao Y
    Chemosphere; 2017 Nov; 186():977-985. PubMed ID: 28835006
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of multi-temperature regimes on cultivation of microalgae in municipal wastewater to simultaneously remove nutrients and produce biomass.
    Xu K; Zou X; Wen H; Xue Y; Qu Y; Li Y
    Appl Microbiol Biotechnol; 2019 Oct; 103(19):8255-8265. PubMed ID: 31396677
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chlorella vulgaris mixotrophic growth enhanced biomass productivity and reduced toxicity from agro-industrial by-products.
    Melo RG; Andrade AF; Bezerra RP; Correia DS; Souza VC; Brasileiro-Vidal AC; Viana Marques DA; Porto ALF
    Chemosphere; 2018 Aug; 204():344-350. PubMed ID: 29674146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Auto-flocculation through cultivation of Chlorella vulgaris in seafood wastewater discharge: Influence of culture conditions on microalgae growth and nutrient removal.
    Nguyen TDP; Tran TNT; Le TVA; Nguyen Phan TX; Show PL; Chia SR
    J Biosci Bioeng; 2019 Apr; 127(4):492-498. PubMed ID: 30416001
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of polycyclic aromatic hydrocarbons (PAHs) from produced water using the microalgae Chlorella vulgaris cultivated in mixotrophic and heterotrophic conditions.
    Ñañez KB; Rios Ramirez KD; Cordeiro de Oliveira OM; Reyes CY; Andrade Moreira ÍT
    Chemosphere; 2024 May; 356():141931. PubMed ID: 38614391
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic modelling of growth and storage molecule production in microalgae under mixotrophic and autotrophic conditions.
    Adesanya VO; Davey MP; Scott SA; Smith AG
    Bioresour Technol; 2014 Apr; 157():293-304. PubMed ID: 24576922
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Screening of microalgae for integral biogas slurry nutrient removal and biogas upgrading by different microalgae cultivation technology.
    Wang X; Bao K; Cao W; Zhao Y; Hu CW
    Sci Rep; 2017 Jul; 7(1):5426. PubMed ID: 28710391
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of CO₂ Concentration and pH on Mixotrophic Growth of Nannochloropsis oculata.
    Razzak SA; Ilyas M; Ali SA; Hossain MM
    Appl Biochem Biotechnol; 2015 Jul; 176(5):1290-302. PubMed ID: 25926014
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of Algal Inoculation on COD and Nitrogen Removal, and Indigenous Bacterial Dynamics in Municipal Wastewater.
    Lee J; Lee J; Shukla SK; Park J; Lee TK
    J Microbiol Biotechnol; 2016 May; 26(5):900-8. PubMed ID: 26930350
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of nutrients and organic pollution load from pulp and paper mill effluent by microalgae in outdoor open pond.
    Usha MT; Sarat Chandra T; Sarada R; Chauhan VS
    Bioresour Technol; 2016 Aug; 214():856-860. PubMed ID: 27161156
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heterotrophic and mixotrophic cultivation of microalgae to simultaneously achieve furfural wastewater treatment and lipid production.
    Cheng P; Huang J; Song X; Yao T; Jiang J; Zhou C; Yan X; Ruan R
    Bioresour Technol; 2022 Apr; 349():126888. PubMed ID: 35202828
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of biogenic compounds from the post-fermentation effluent in a culture of Chlorella vulgaris.
    Szwarc K; Szwarc D; Zieliński M
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):111-117. PubMed ID: 31037532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of CO₂ supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Dec; 126():24-30. PubMed ID: 23073086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrating anaerobic digestion and microalgae cultivation for dairy wastewater treatment and potential biochemicals production from the harvested microalgal biomass.
    Kusmayadi A; Lu PH; Huang CY; Leong YK; Yen HW; Chang JS
    Chemosphere; 2022 Mar; 291(Pt 1):133057. PubMed ID: 34838828
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The growth and nutrient removal properties of heterotrophic microalgae Chlorella sorokiniana in simulated wastewater containing volatile fatty acids.
    Lu T; Su K; Ma G; Jia C; Li J; Zhao Q; Song M; Xu C; Song X
    Chemosphere; 2024 Jun; 358():142270. PubMed ID: 38719126
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment.
    Zhu L; Wang Z; Shu Q; Takala J; Hiltunen E; Feng P; Yuan Z
    Water Res; 2013 Sep; 47(13):4294-302. PubMed ID: 23764580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production.
    Yadav G; Dash SK; Sen R
    Sci Total Environ; 2019 Oct; 688():129-135. PubMed ID: 31229810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.