These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 26868061)
1. Multiple Imputation for General Missing Data Patterns in the Presence of High-dimensional Data. Deng Y; Chang C; Ido MS; Long Q Sci Rep; 2016 Feb; 6():21689. PubMed ID: 26868061 [TBL] [Abstract][Full Text] [Related]
2. Missing value imputation in high-dimensional phenomic data: imputable or not, and how? Liao SG; Lin Y; Kang DD; Chandra D; Bon J; Kaminski N; Sciurba FC; Tseng GC BMC Bioinformatics; 2014 Nov; 15(1):346. PubMed ID: 25371041 [TBL] [Abstract][Full Text] [Related]
3. Multiple imputation in the presence of high-dimensional data. Zhao Y; Long Q Stat Methods Med Res; 2016 Oct; 25(5):2021-2035. PubMed ID: 24275026 [TBL] [Abstract][Full Text] [Related]
4. Hierarchical imputation of systematically and sporadically missing data: An approximate Bayesian approach using chained equations. Jolani S Biom J; 2018 Mar; 60(2):333-351. PubMed ID: 28990686 [TBL] [Abstract][Full Text] [Related]
5. The multiple imputation method: a case study involving secondary data analysis. Walani SR; Cleland CM Nurse Res; 2015 May; 22(5):13-9. PubMed ID: 25976532 [TBL] [Abstract][Full Text] [Related]
6. Multiple imputation with missing data indicators. Beesley LJ; Bondarenko I; Elliot MR; Kurian AW; Katz SJ; Taylor JM Stat Methods Med Res; 2021 Dec; 30(12):2685-2700. PubMed ID: 34643465 [TBL] [Abstract][Full Text] [Related]
7. Multiple imputation by chained equations for systematically and sporadically missing multilevel data. Resche-Rigon M; White IR Stat Methods Med Res; 2018 Jun; 27(6):1634-1649. PubMed ID: 27647809 [TBL] [Abstract][Full Text] [Related]
8. Exploiting mutual information for the imputation of static and dynamic mixed-type clinical data with an adaptive k-nearest neighbours approach. Tavazzi E; Daberdaku S; Vasta R; Calvo A; Chiò A; Di Camillo B BMC Med Inform Decis Mak; 2020 Aug; 20(Suppl 5):174. PubMed ID: 32819346 [TBL] [Abstract][Full Text] [Related]
9. NS-kNN: a modified k-nearest neighbors approach for imputing metabolomics data. Lee JY; Styczynski MP Metabolomics; 2018 Nov; 14(12):153. PubMed ID: 30830437 [TBL] [Abstract][Full Text] [Related]
10. A passive and inclusive strategy to impute missing values of a composite categorical variable with an application to determine HIV transmission categories. Pan Y; He Y; Song R; Wang G; An Q Ann Epidemiol; 2020 Nov; 51():41-47.e2. PubMed ID: 32711055 [TBL] [Abstract][Full Text] [Related]
11. Missing data imputation on biomedical data using deeply learned clustering and L2 regularized regression based on symmetric uncertainty. Nagarajan G; Dhinesh Babu LD Artif Intell Med; 2022 Jan; 123():102214. PubMed ID: 34998512 [TBL] [Abstract][Full Text] [Related]
12. Handling missing rows in multi-omics data integration: multiple imputation in multiple factor analysis framework. Voillet V; Besse P; Liaubet L; San Cristobal M; González I BMC Bioinformatics; 2016 Oct; 17(1):402. PubMed ID: 27716030 [TBL] [Abstract][Full Text] [Related]
13. DNA microarray data imputation and significance analysis of differential expression. Jörnsten R; Wang HY; Welsh WJ; Ouyang M Bioinformatics; 2005 Nov; 21(22):4155-61. PubMed ID: 16118262 [TBL] [Abstract][Full Text] [Related]
14. Multiple imputation of missing genotype data for unrelated individuals. Souverein OW; Zwinderman AH; Tanck MW Ann Hum Genet; 2006 May; 70(Pt 3):372-81. PubMed ID: 16674559 [TBL] [Abstract][Full Text] [Related]
15. 3D-MICE: integration of cross-sectional and longitudinal imputation for multi-analyte longitudinal clinical data. Luo Y; Szolovits P; Dighe AS; Baron JM J Am Med Inform Assoc; 2018 Jun; 25(6):645-653. PubMed ID: 29202205 [TBL] [Abstract][Full Text] [Related]
16. Handling missing data in patient-level cost-effectiveness analysis alongside randomised clinical trials. Manca A; Palmer S Appl Health Econ Health Policy; 2005; 4(2):65-75. PubMed ID: 16162026 [TBL] [Abstract][Full Text] [Related]
17. Does the missing data imputation method affect the composition and performance of prognostic models? Baneshi MR; Talei AR Iran Red Crescent Med J; 2012 Jan; 14(1):31-6. PubMed ID: 22737551 [TBL] [Abstract][Full Text] [Related]
18. Bias and Precision of the "Multiple Imputation, Then Deletion" Method for Dealing With Missing Outcome Data. Sullivan TR; Salter AB; Ryan P; Lee KJ Am J Epidemiol; 2015 Sep; 182(6):528-34. PubMed ID: 26337075 [TBL] [Abstract][Full Text] [Related]
19. [How to deal with missing data? Multiple imputation by chained equations: recommendations and explanations for clinical practice]. Legendre B; Cerasuolo D; Dejardin O; Boyer A Nephrol Ther; 2023 Jun; 19(3):171-179. PubMed ID: 37272826 [TBL] [Abstract][Full Text] [Related]
20. Variable selection in the presence of missing data: resampling and imputation. Long Q; Johnson BA Biostatistics; 2015 Jul; 16(3):596-610. PubMed ID: 25694614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]