BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2626 related articles for article (PubMed ID: 26868173)

  • 21. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Biological evaluation of three-dimensional printed co-poly lactic acid/glycolic acid/tri-calcium phosphate scaffold for bone reconstruction].
    Li SY; Zhou M; Lai YX; Geng YM; Cao SS; Chen XM
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2016 Nov; 51(11):661-666. PubMed ID: 27806758
    [No Abstract]   [Full Text] [Related]  

  • 23. Incorporation of BMP-2 nanoparticles on the surface of a 3D-printed hydroxyapatite scaffold using an ε-polycaprolactone polymer emulsion coating method for bone tissue engineering.
    Kim BS; Yang SS; Kim CS
    Colloids Surf B Biointerfaces; 2018 Oct; 170():421-429. PubMed ID: 29957531
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal Ion Augmented Mussel Inspired Polydopamine Immobilized 3D Printed Osteoconductive Scaffolds for Accelerated Bone Tissue Regeneration.
    Ghorai SK; Dutta A; Roy T; Guha Ray P; Ganguly D; Ashokkumar M; Dhara S; Chattopadhyay S
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):28455-28475. PubMed ID: 35715225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mussel-inspired polydopamine-mediated surface modification of freeze-cast poly (ε-caprolactone) scaffolds for bone tissue engineering applications.
    Ghorbani F; Zamanian A; Sahranavard M
    Biomed Tech (Berl); 2020 May; 65(3):273-287. PubMed ID: 31655791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan.
    Yang Y; Yang S; Wang Y; Yu Z; Ao H; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2016 Dec; 46():112-128. PubMed ID: 27686039
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro and in vivo studies of rhBMP2-coated PS/PCL fibrous scaffolds for bone regeneration.
    Nguyen TH; Lee BT
    J Biomed Mater Res A; 2013 Mar; 101(3):797-808. PubMed ID: 22961954
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensionally printed polycaprolactone/beta-tricalcium phosphate scaffold was more effective as an rhBMP-2 carrier for new bone formation than polycaprolactone alone.
    Park SA; Lee HJ; Kim SY; Kim KS; Jo DW; Park SY
    J Biomed Mater Res A; 2021 Jun; 109(6):840-848. PubMed ID: 32776655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D printing mesoporous bioactive glass/sodium alginate/gelatin sustained release scaffolds for bone repair.
    Wu J; Miao G; Zheng Z; Li Z; Ren W; Wu C; Li Y; Huang Z; Yang L; Guo L
    J Biomater Appl; 2019 Jan; 33(6):755-765. PubMed ID: 30426864
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D printed alendronate-releasing poly(caprolactone) porous scaffolds enhance osteogenic differentiation and bone formation in rat tibial defects.
    Kim SE; Yun YP; Shim KS; Kim HJ; Park K; Song HR
    Biomed Mater; 2016 Sep; 11(5):055005. PubMed ID: 27680282
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication and characterization of the 3D-printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration.
    Heo SY; Ko SC; Oh GW; Kim N; Choi IW; Park WS; Jung WK
    J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):1937-1944. PubMed ID: 30508311
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In situ gold nanoparticle growth on polydopamine-coated 3D-printed scaffolds improves osteogenic differentiation for bone tissue engineering applications: in vitro and in vivo studies.
    Lee SJ; Lee HJ; Kim SY; Seok JM; Lee JH; Kim WD; Kwon IK; Park SY; Park SA
    Nanoscale; 2018 Aug; 10(33):15447-15453. PubMed ID: 30091763
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-mulberry silk fibroin grafted poly (Є-caprolactone)/nano hydroxyapatite nanofibrous scaffold for dual growth factor delivery to promote bone regeneration.
    Bhattacharjee P; Naskar D; Maiti TK; Bhattacharya D; Kundu SC
    J Colloid Interface Sci; 2016 Jun; 472():16-33. PubMed ID: 26998786
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Osteogenic differentiation of pre-osteoblasts on biomimetic tyrosine-derived polycarbonate scaffolds.
    Kim J; Magno MH; Alvarez P; Darr A; Kohn J; Hollinger JO
    Biomacromolecules; 2011 Oct; 12(10):3520-7. PubMed ID: 21834593
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving osteointegration and osteogenesis of three-dimensional porous Ti6Al4V scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating.
    Li Y; Yang W; Li X; Zhang X; Wang C; Meng X; Pei Y; Fan X; Lan P; Wang C; Li X; Guo Z
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5715-24. PubMed ID: 25711714
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mussel-inspired hybrid coating functionalized porous hydroxyapatite scaffolds for bone tissue regeneration.
    Han L; Jiang Y; Lv C; Gan D; Wang K; Ge X; Lu X
    Colloids Surf B Biointerfaces; 2019 Jul; 179():470-478. PubMed ID: 31005742
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing.
    Kim IG; Hwang MP; Du P; Ko J; Ha CW; Do SH; Park K
    Biomaterials; 2015 May; 50():75-86. PubMed ID: 25736498
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering.
    Lin D; Yang K; Tang W; Liu Y; Yuan Y; Liu C
    Colloids Surf B Biointerfaces; 2015 Jul; 131():1-11. PubMed ID: 25935647
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Osteoregenerative Potential of 3D-Printed Poly
    Lawrence LM; Salary RR; Miller V; Valluri A; Denning KL; Case-Perry S; Abdelgaber K; Smith S; Claudio PP; Day JB
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 132.