BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 26868933)

  • 1. Quantitative profiling of sphingolipids in wild Cordyceps and its mycelia by using UHPLC-MS.
    Mi JN; Wang JR; Jiang ZH
    Sci Rep; 2016 Feb; 6():20870. PubMed ID: 26868933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Profiling of Immunosuppressive Glycosphingolipids and Sphingomyelins in Wild Cordyceps.
    Mi J; Han Y; Xu Y; Kou J; Li WJ; Wang JR; Jiang ZH
    J Agric Food Chem; 2018 Aug; 66(34):8991-8998. PubMed ID: 30059214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolomic variation in wild and cultured cordyceps and mycelia of Isaria cicadae.
    He Y; Zhang W; Peng F; Lu R; Zhou H; Bao G; Wang B; Huang B; Li Z; Hu F
    Biomed Chromatogr; 2019 Apr; 33(4):e4478. PubMed ID: 30578653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Immunosuppressive Sphingoid Base and Ceramide Analogues in Wild Cordyceps.
    Mi JN; Han Y; Xu Y; Kou J; Wang JR; Jiang ZH
    Sci Rep; 2016 Dec; 6():38641. PubMed ID: 27966660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of sphingomyelin, glucosylceramide, ceramide, sphingosine, and sphingosine 1-phosphate by tandem mass spectrometry.
    Sullards MC
    Methods Enzymol; 2000; 312():32-45. PubMed ID: 11070861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass Spectrometry-Based Profiling of Plant Sphingolipids from Typical and Aberrant Metabolism.
    Cahoon RE; Solis AG; Markham JE; Cahoon EB
    Methods Mol Biol; 2021; 2295():157-177. PubMed ID: 34047977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-specific, quantitative methods for analysis of sphingolipids by liquid chromatography-tandem mass spectrometry: "inside-out" sphingolipidomics.
    Sullards MC; Allegood JC; Kelly S; Wang E; Haynes CA; Park H; Chen Y; Merrill AH
    Methods Enzymol; 2007; 432():83-115. PubMed ID: 17954214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry.
    Bielawski J; Pierce JS; Snider J; Rembiesa B; Szulc ZM; Bielawska A
    Methods Mol Biol; 2009; 579():443-67. PubMed ID: 19763489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry.
    Bielawski J; Szulc ZM; Hannun YA; Bielawska A
    Methods; 2006 Jun; 39(2):82-91. PubMed ID: 16828308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of the sphingolipid fraction from mycelia of Cordyceps sinensis and its immunosuppressive activity.
    Wu R; Jia Q; Li X; Ma Y; Zhang J; Li Y; Zhang S
    J Ethnopharmacol; 2022 Jun; 291():115126. PubMed ID: 35189280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [HPLC fingerprint analysis of cordyceps and mycelium of cultured cordy].
    Wu YS; Zhou DL; Yan D; Ren YS; Fang YL; Xiao XH; Du XX; Wang J
    Zhongguo Zhong Yao Za Zhi; 2008 Oct; 33(19):2212-4. PubMed ID: 19166009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a mass spectrometry-based metabolomics workflow for traceability of wild and cultivated
    Ding B; Li H; Huang H; Xie J; Wang Z; Chen W; Tao Y
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2022 Nov; 39(11):1773-1784. PubMed ID: 36070448
    [No Abstract]   [Full Text] [Related]  

  • 13. GC-MS Profiling of Volatile Components in Different Fermentation Products of Cordyceps Sinensis Mycelia.
    Zhang H; Li Y; Mi J; Zhang M; Wang Y; Jiang Z; Hu P
    Molecules; 2017 Oct; 22(10):. PubMed ID: 29064460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of complex mixtures of sphingolipids in the stratum corneum by reversed-phase high-performance liquid chromatography and atmospheric pressure photospray ionization mass spectrometry.
    Muñoz-Garcia A; Ro J; Brown JC; Williams JB
    J Chromatogr A; 2006 Nov; 1133(1-2):58-68. PubMed ID: 17027012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of cytotoxic extracts from fruiting bodies, infected insects and cultured mycelia of Cordyceps formosana.
    Lu RL; Bao GH; Hu FL; Huang B; Li CR; Li ZZ
    Food Chem; 2014 Feb; 145():1066-71. PubMed ID: 24128585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sphingolipids in marine microalgae: Development and application of a mass spectrometric method for global structural characterization of ceramides and glycosphingolipids in three major phyla.
    Li Y; Lou Y; Mu T; Ke A; Ran Z; Xu J; Chen J; Zhou C; Yan X; Xu Q; Tan Y
    Anal Chim Acta; 2017 Sep; 986():82-94. PubMed ID: 28870328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sphingolipid profiling of human plasma and FPLC-separated lipoprotein fractions by hydrophilic interaction chromatography tandem mass spectrometry.
    Scherer M; Böttcher A; Schmitz G; Liebisch G
    Biochim Biophys Acta; 2011 Feb; 1811(2):68-75. PubMed ID: 21081176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study on the chemical constitutes of submerged cultivation mycelium of Cordyceps jiangxiensis].
    Sun ZH; Xiao JH; Pan WD; Zhang MS; Xu P
    Zhong Yao Cai; 2010 Dec; 33(12):1878-81. PubMed ID: 21548364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and determination of nucleosides in Cordyceps sinensis and its substitutes by high performance liquid chromatography with mass spectrometric detection.
    Guo FQ; Li A; Huang LF; Liang YZ; Chen BM
    J Pharm Biomed Anal; 2006 Feb; 40(3):623-30. PubMed ID: 16168606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolomic profiling of sphingolipids in human glioma cell lines by liquid chromatography tandem mass spectrometry.
    Sullards MC; Wang E; Peng Q; Merrill AH
    Cell Mol Biol (Noisy-le-grand); 2003 Jul; 49(5):789-97. PubMed ID: 14528916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.