BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 26869314)

  • 1. Improving the thermostability and enhancing the Ca(2+) binding of the maltohexaose-forming α-amylase from Bacillus stearothermophilus.
    Li Z; Duan X; Wu J
    J Biotechnol; 2016 Mar; 222():65-72. PubMed ID: 26869314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of thermostable alpha-amylase from Bacillus licheniformis refined at 1.7 A resolution.
    Hwang KY; Song HK; Chang C; Lee J; Lee SY; Kim KK; Choe S; Sweet RM; Suh SW
    Mol Cells; 1997 Apr; 7(2):251-8. PubMed ID: 9163741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase.
    Declerck N; Machius M; Wiegand G; Huber R; Gaillardin C
    J Mol Biol; 2000 Aug; 301(4):1041-57. PubMed ID: 10966804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Expression of Maltohexaose-Forming
    Li Z; Su L; Duan X; Wu D; Wu J
    Biomed Res Int; 2017; 2017():5479762. PubMed ID: 29250543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of an extra loop in the B-domain of an alpha-amylase from B. stearothermophilus US100.
    Khemakhem B; Ben Ali M; Aghajari N; Juy M; Haser R; Bejar S
    Biochem Biophys Res Commun; 2009 Jul; 385(1):78-83. PubMed ID: 19422796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermostability enhancement and change in starch hydrolysis profile of the maltohexaose-forming amylase of Bacillus stearothermophilus US100 strain.
    Ben Ali M; Khemakhem B; Robert X; Haser R; Bejar S
    Biochem J; 2006 Feb; 394(Pt 1):51-6. PubMed ID: 16197365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the reversibility of thermal denaturation and catalytic efficiency of Bacillus licheniformis α-amylase through stabilizing a long loop in domain B.
    Li Z; Duan X; Chen S; Wu J
    PLoS One; 2017; 12(3):e0173187. PubMed ID: 28253342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C-terminal truncations of a thermostable Bacillus stearothermophilus alpha-amylase.
    Vihinen M; Peltonen T; Iitiä A; Suominen I; Mäntsälä P
    Protein Eng; 1994 Oct; 7(10):1255-9. PubMed ID: 7855141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-Based Engineering of a Maltooligosaccharide-Forming Amylase To Enhance Product Specificity.
    Xie X; Ban X; Gu Z; Li C; Hong Y; Cheng L; Li Z
    J Agric Food Chem; 2020 Jan; 68(3):838-844. PubMed ID: 31896254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of the alpha-amylase from Geobacillus stearothermophilus US100 for detergent incorporation.
    Khemakhem B; Ali MB; Aghajari N; Juy M; Haser R; Bejar S
    Biotechnol Bioeng; 2009 Feb; 102(2):380-9. PubMed ID: 18951544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium and sodium ions synergistically enhance the thermostability of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04.
    Pan S; Gu Z; Ding N; Zhang Z; Chen D; Li C; Hong Y; Cheng L; Li Z
    Food Chem; 2019 Jun; 283():170-176. PubMed ID: 30722857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the thermostability and product specificity of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04.
    Xie X; Ban X; Gu Z; Li C; Hong Y; Cheng L; Li Z
    Biotechnol Lett; 2020 Feb; 42(2):295-303. PubMed ID: 31792661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the role of asparagine mutation in thermostability of Bacillus KR-8104 α-amylase.
    Rahimzadeh M; Khajeh K; Mirshahi M; Khayatian M; Schwarzenbacher R
    Int J Biol Macromol; 2012 May; 50(4):1175-82. PubMed ID: 22126991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of thermal stability of a mutagenised α-amylase by manipulation of the calcium-binding site.
    Ghollasi M; Ghanbari-Safari M; Khajeh K
    Enzyme Microb Technol; 2013 Dec; 53(6-7):406-13. PubMed ID: 24315644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fusion of Bacillus stearothermophilus leucine aminopeptidase II with the raw-starch-binding domain of Bacillus sp. strain TS-23 alpha-amylase generates a chimeric enzyme with enhanced thermostability and catalytic activity.
    Hua YW; Chi MC; Lo HF; Hsu WH; Lin LL
    J Ind Microbiol Biotechnol; 2004 Jul; 31(6):273-7. PubMed ID: 15248089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-directed mutagenesis of the calcium-binding site of alpha-amylase of Bacillus licheniformis.
    Priyadharshini R; Gunasekaran P
    Biotechnol Lett; 2007 Oct; 29(10):1493-9. PubMed ID: 17598074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperthermostable mutants of Bacillus licheniformis alpha-amylase: multiple amino acid replacements and molecular modelling.
    Declerck N; Joyet P; Trosset JY; Garnier J; Gaillardin C
    Protein Eng; 1995 Oct; 8(10):1029-37. PubMed ID: 8771184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of Bacillus stearothermophilus alpha-amylase: possible factors determining the thermostability.
    Suvd D; Fujimoto Z; Takase K; Matsumura M; Mizuno H
    J Biochem; 2001 Mar; 129(3):461-8. PubMed ID: 11226887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Thermostability of
    Zhu M; Zhai W; Song R; Lin L; Wei W; Wei D
    J Agric Food Chem; 2023 Dec; 71(48):18928-18942. PubMed ID: 38053503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of mutation of an amino acid residue near the catalytic site on the activity of Bacillus stearothermophilus alpha-amylase.
    Takase K
    Eur J Biochem; 1993 Feb; 211(3):899-902. PubMed ID: 8436143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.