BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 26869582)

  • 1. The crystal structure of human GlnRS provides basis for the development of neurological disorders.
    Ognjenović J; Wu J; Matthies D; Baxa U; Subramaniam S; Ling J; Simonović M
    Nucleic Acids Res; 2016 Apr; 44(7):3420-31. PubMed ID: 26869582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional analysis of Glutaminyl-tRNA synthetase (TtGlnRS) from Thermus thermophilus HB8 and its complexes.
    Nachiappan M; Jain V; Sharma A; Yogavel M; Jeyakanthan J
    Int J Biol Macromol; 2018 Dec; 120(Pt B):1379-1386. PubMed ID: 30248426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure of yeast glutaminyl-tRNA synthetase and modeling of its interaction with tRNA.
    Grant TD; Luft JR; Wolfley JR; Snell ME; Tsuruta H; Corretore S; Quartley E; Phizicky EM; Grayhack EJ; Snell EH
    J Mol Biol; 2013 Jul; 425(14):2480-93. PubMed ID: 23583912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deinococcus glutaminyl-tRNA synthetase is a chimer between proteins from an ancient and the modern pathways of aminoacyl-tRNA formation.
    Deniziak M; Sauter C; Becker HD; Paulus CA; Giegé R; Kern D
    Nucleic Acids Res; 2007; 35(5):1421-31. PubMed ID: 17284460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural conservation of an ancient tRNA sensor in eukaryotic glutaminyl-tRNA synthetase.
    Grant TD; Snell EH; Luft JR; Quartley E; Corretore S; Wolfley JR; Snell ME; Hadd A; Perona JJ; Phizicky EM; Grayhack EJ
    Nucleic Acids Res; 2012 Apr; 40(8):3723-31. PubMed ID: 22180531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the ArgRS-GlnRS-AIMP1 complex and its implications for mammalian translation.
    Fu Y; Kim Y; Jin KS; Kim HS; Kim JH; Wang D; Park M; Jo CH; Kwon NH; Kim D; Kim MH; Jeon YH; Hwang KY; Kim S; Cho Y
    Proc Natl Acad Sci U S A; 2014 Oct; 111(42):15084-9. PubMed ID: 25288775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A chimaeric glutamyl:glutaminyl-tRNA synthetase: implications for evolution.
    Saha R; Dasgupta S; Basu G; Roy S
    Biochem J; 2009 Jan; 417(2):449-55. PubMed ID: 18817520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutaminyl-tRNA Synthetase from Pseudomonas aeruginosa: Characterization, structure, and development as a screening platform.
    Escamilla Y; Hughes CA; Abendroth J; Dranow DM; Balboa S; Dean FB; Bullard JM
    Protein Sci; 2020 Apr; 29(4):905-918. PubMed ID: 31833153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A functional loop spanning distant domains of glutaminyl-tRNA synthetase also stabilizes a molten globule state.
    Saha R; Dasgupta S; Banerjee R; Mitra-Bhattacharyya A; Söll D; Basu G; Roy S
    Biochemistry; 2012 Jun; 51(22):4429-37. PubMed ID: 22563625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active-site assembly in glutaminyl-tRNA synthetase by tRNA-mediated induced fit.
    Uter NT; Perona JJ
    Biochemistry; 2006 Jun; 45(22):6858-65. PubMed ID: 16734422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate selection by aminoacyl-tRNA synthetases.
    Ibba M; Thomann HU; Hong KW; Sherman JM; Weygand-Durasevic I; Sever S; Stange-Thomann N; Praetorius M; Söll D
    Nucleic Acids Symp Ser; 1995; (33):40-2. PubMed ID: 8643392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutaminyl-tRNA synthetase.
    Freist W; Gauss DH; Ibba M; Söll D
    Biol Chem; 1997 Oct; 378(10):1103-17. PubMed ID: 9372179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Misaminoacylation by glutaminyl-tRNA synthetase: relaxed specificity in wild-type and mutant enzymes.
    Hoben P; Uemura H; Yamao F; Cheung A; Swanson R; Sumner-Smith M; Söll D
    Fed Proc; 1984 Dec; 43(15):2972-6. PubMed ID: 6389180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallization and preliminary X-ray characterization of the atypical glutaminyl-tRNA synthetase from Deinococcus radiodurans.
    Deniziak MA; Sauter C; Becker HD; Giegé R; Kern D
    Acta Crystallogr D Biol Crystallogr; 2004 Dec; 60(Pt 12 Pt 2):2361-3. PubMed ID: 15614972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic analysis of functional connectivity between substrate recognition domains of Escherichia coli glutaminyl-tRNA synthetase.
    Kitabatake M; Ibba M; Hong KW; Söll D; Inokuchi H
    Mol Gen Genet; 1996 Oct; 252(6):717-22. PubMed ID: 8917315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ
    J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connecting anticodon recognition with the active site of Escherichia coli glutaminyl-tRNA synthetase.
    Weygand-Durasević I; Rogers MJ; Söll D
    J Mol Biol; 1994 Jul; 240(2):111-8. PubMed ID: 8027995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Switching the amino acid specificity of an aminoacyl-tRNA synthetase.
    Agou F; Quevillon S; Kerjan P; Mirande M
    Biochemistry; 1998 Aug; 37(32):11309-14. PubMed ID: 9698378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations in KARS cause a severe neurological and neurosensory disease with optic neuropathy.
    Scheidecker S; Bär S; Stoetzel C; Geoffroy V; Lannes B; Rinaldi B; Fischer F; Becker HD; Pelletier V; Pagan C; Acquaviva-Bourdain C; Kremer S; Mirande M; Tranchant C; Muller J; Friant S; Dollfus H
    Hum Mutat; 2019 Oct; 40(10):1826-1840. PubMed ID: 31116475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slow solvation dynamics at the active site of an enzyme: implications for catalysis.
    Guha S; Sahu K; Roy D; Mondal SK; Roy S; Bhattacharyya K
    Biochemistry; 2005 Jun; 44(25):8940-7. PubMed ID: 15966719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.