These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 26869786)
1. Enhanced osteogenic activity and anti-inflammatory properties of Lenti-BMP-2-loaded TiO₂ nanotube layers fabricated by lyophilization following trehalose addition. Zhang X; Zhang Z; Shen G; Zhao J Int J Nanomedicine; 2016; 11():429-39. PubMed ID: 26869786 [TBL] [Abstract][Full Text] [Related]
2. Dose reduction of bone morphogenetic protein-2 for bone regeneration using a delivery system based on lyophilization with trehalose. Zhang X; Yu Q; Wang YA; Zhao J Int J Nanomedicine; 2018; 13():403-414. PubMed ID: 29391797 [TBL] [Abstract][Full Text] [Related]
3. Trehalose maintains bioactivity and promotes sustained release of BMP-2 from lyophilized CDHA scaffolds for enhanced osteogenesis in vitro and in vivo. Zhao J; Wang S; Bao J; Sun X; Zhang X; Zhang X; Ye D; Wei J; Liu C; Jiang X; Shen G; Zhang Z PLoS One; 2013; 8(1):e54645. PubMed ID: 23359400 [TBL] [Abstract][Full Text] [Related]
4. Enhanced Osseointegration of Titanium Implants by Surface Modification with Silicon-doped Titania Nanotubes. Zhao X; You L; Wang T; Zhang X; Li Z; Ding L; Li J; Xiao C; Han F; Li B Int J Nanomedicine; 2020; 15():8583-8594. PubMed ID: 33173295 [TBL] [Abstract][Full Text] [Related]
5. [Effects of lyophilized on the biological activities of lentiviral vector of bone morphogenetic protein 2]. Wei XL; Liu DY; Pan J; Lu PJ; Zhao J Shanghai Kou Qiang Yi Xue; 2016 Oct; 25(5):522-526. PubMed ID: 28116420 [TBL] [Abstract][Full Text] [Related]
6. Immobilization of type I collagen/hyaluronic acid multilayer coating on enoxacin loaded titania nanotubes for improved osteogenesis and osseointegration in ovariectomized rats. Li H; Nie B; Zhang S; Long T; Yue B Colloids Surf B Biointerfaces; 2019 Mar; 175():409-420. PubMed ID: 30562715 [TBL] [Abstract][Full Text] [Related]
7. Osteogenic capability of strontium and icariin-loaded TiO Zhu Y; Zheng T; Wen LM; Li R; Zhang YB; Bi WJ; Feng XJ; Qi MC J Biomater Appl; 2021 Apr; 35(9):1119-1131. PubMed ID: 33632004 [TBL] [Abstract][Full Text] [Related]
8. Surface Immobilization of TiO Li Y; Song Y; Ma A; Li C Biomed Res Int; 2019; 2019():5697250. PubMed ID: 31032352 [TBL] [Abstract][Full Text] [Related]
9. Zn-Incorporated TiO Chen B; You Y; Ma A; Song Y; Jiao J; Song L; Shi E; Zhong X; Li Y; Li C Int J Nanomedicine; 2020; 15():2095-2118. PubMed ID: 32273705 [TBL] [Abstract][Full Text] [Related]
10. Micro/nano topological modification of TiO Jinsheng L; Qing D; Junhao C; Qiqi S; Jieru C; Liwen Y; Zhiyun G; Tailin G; Jie W SLAS Discov; 2024 Apr; 29(3):100139. PubMed ID: 38169172 [TBL] [Abstract][Full Text] [Related]
11. RGD peptide immobilized on TiO2 nanotubes for increased bone marrow stromal cells adhesion and osteogenic gene expression. Cao X; Yu WQ; Qiu J; Zhao YF; Zhang YL; Zhang FQ J Mater Sci Mater Med; 2012 Feb; 23(2):527-36. PubMed ID: 22143905 [TBL] [Abstract][Full Text] [Related]
12. Titanium dioxide nanotubes increase purinergic receptor P2Y6 expression and activate its downstream PKCα-ERK1/2 pathway in bone marrow mesenchymal stem cells under osteogenic induction. Wang C; Liu Y; Hu X; Shang X; Ma S; Guo H; Ma X; Cai D; Hu Z; Zhao Y; Zhu Y; Cao Z; Yu H; Cheng W Acta Biomater; 2023 Feb; 157():670-682. PubMed ID: 36442823 [TBL] [Abstract][Full Text] [Related]
13. TiO2 nanotube topography enhances osteogenesis through filamentous actin and XB130-protein-mediated mechanotransduction. Chang Y; Kong K; Tong Z; Qiao H; Jin M; Wu X; Ouyang Z; Zhang J; Zhai Z; Li H Acta Biomater; 2024 Mar; 177():525-537. PubMed ID: 38360291 [TBL] [Abstract][Full Text] [Related]
14. Mechanical strain promotes osteogenic differentiation of mesenchymal stem cells on TiO Chang Y; Shao Y; Liu Y; Xia R; Tong Z; Zhang J; Zhai Z; Cheng W; Li H Biochem Biophys Res Commun; 2019 Apr; 511(4):840-846. PubMed ID: 30850158 [TBL] [Abstract][Full Text] [Related]
15. Kaempferol-immobilized titanium dioxide promotes formation of new bone: effects of loading methods on bone marrow stromal cell differentiation in vivo and in vitro. Tsuchiya S; Sugimoto K; Kamio H; Okabe K; Kuroda K; Okido M; Hibi H Int J Nanomedicine; 2018; 13():1665-1676. PubMed ID: 29593412 [TBL] [Abstract][Full Text] [Related]
16. Synergistic control of mesenchymal stem cell differentiation by nanoscale surface geometry and immobilized growth factors on TiO2 nanotubes. Park J; Bauer S; Pittrof A; Killian MS; Schmuki P; von der Mark K Small; 2012 Jan; 8(1):98-107. PubMed ID: 22095845 [TBL] [Abstract][Full Text] [Related]
17. Effects of a hybrid micro/nanorod topography-modified titanium implant on adhesion and osteogenic differentiation in rat bone marrow mesenchymal stem cells. Zhang W; Li Z; Huang Q; Xu L; Li J; Jin Y; Wang G; Liu X; Jiang X Int J Nanomedicine; 2013; 8():257-65. PubMed ID: 23345973 [TBL] [Abstract][Full Text] [Related]
18. Chitosan Coating of TiO2 Nanotube Arrays for Improved Metformin Release and Osteoblast Differentiation. Hashemi A; Ezati M; Mohammadnejad J; Houshmand B; Faghihi S Int J Nanomedicine; 2020; 15():4471-4481. PubMed ID: 32606689 [TBL] [Abstract][Full Text] [Related]
19. Phelligridin D-loaded oral nanotube titanium implant enhances osseointegration and prevents osteolysis in rat mandible. Kim JE; Takanche JS; Kim JS; Lee MH; Jeon JG; Park IS; Yi HK Artif Cells Nanomed Biotechnol; 2018; 46(sup2):397-407. PubMed ID: 29648890 [TBL] [Abstract][Full Text] [Related]
20. Hydrodynamic control of titania nanotube formation on Ti-6Al-4V alloys enhances osteogenic differentiation of human mesenchymal stromal cells. Li J; Mutreja I; Tredinnick S; Jermy M; Hooper GJ; Woodfield TBF Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110562. PubMed ID: 32229001 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]