These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26869877)

  • 1. A Toolkit for Orthogonal and in vivo Optical Manipulation of Ionotropic Glutamate Receptors.
    Levitz J; Popescu AT; Reiner A; Isacoff EY
    Front Mol Neurosci; 2016; 9():2. PubMed ID: 26869877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics.
    Carroll EC; Berlin S; Levitz J; Kienzler MA; Yuan Z; Madsen D; Larsen DS; Isacoff EY
    Proc Natl Acad Sci U S A; 2015 Feb; 112(7):E776-85. PubMed ID: 25653339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the ionotropic activity of glutamate GluD2 receptor in HEK cells with genetically-engineered photopharmacology.
    Lemoine D; Mondoloni S; Tange J; Lambolez B; Faure P; Taly A; Tricoire L; Mourot A
    Elife; 2020 Oct; 9():. PubMed ID: 33112237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical control of ligand-gated ion channels.
    Szobota S; McKenzie C; Janovjak H
    Methods Mol Biol; 2013; 998():417-35. PubMed ID: 23529448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetic techniques for the study of native potassium channels.
    Sandoz G; Levitz J
    Front Mol Neurosci; 2013; 6():6. PubMed ID: 23596388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic pharmacology for control of native neuronal signaling proteins.
    Kramer RH; Mourot A; Adesnik H
    Nat Neurosci; 2013 Jul; 16(7):816-23. PubMed ID: 23799474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetic Control of Mammalian Ion Channels with Chemical Photoswitches.
    Lemoine D; Durand-de Cuttoli R; Mourot A
    Methods Mol Biol; 2016; 1408():177-93. PubMed ID: 26965123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Optically dissecting brain nicotinic receptor function with photo-controllable designer receptors].
    Durand-de Cuttoli R; Mondoloni S; Mourot A
    Biol Aujourdhui; 2017; 211(2):173-188. PubMed ID: 29236669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Regulation of Class C GPCRs by Photoswitchable Orthogonal Remotely Tethered Ligands.
    Acosta-Ruiz A; Broichhagen J; Levitz J
    Methods Mol Biol; 2019; 1947():103-136. PubMed ID: 30969413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Branched Photoswitchable Tethered Ligands Enable Ultra-efficient Optical Control and Detection of G Protein-Coupled Receptors In Vivo.
    Acosta-Ruiz A; Gutzeit VA; Skelly MJ; Meadows S; Lee J; Parekh P; Orr AG; Liston C; Pleil KE; Broichhagen J; Levitz J
    Neuron; 2020 Feb; 105(3):446-463.e13. PubMed ID: 31784287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical modulation of neurotransmission using calcium photocurrents through the ion channel LiGluR.
    Izquierdo-Serra M; Trauner D; Llobet A; Gorostiza P
    Front Mol Neurosci; 2013; 6():3. PubMed ID: 23519552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical switches and triggers for the manipulation of ion channels and pores.
    Gorostiza P; Isacoff E
    Mol Biosyst; 2007 Oct; 3(10):686-704. PubMed ID: 17882331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoswitching of cell surface receptors using tethered ligands.
    Reiner A; Isacoff EY
    Methods Mol Biol; 2014; 1148():45-68. PubMed ID: 24718794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The glutamate receptor GluK2 contributes to the regulation of glucose homeostasis and its deterioration during aging.
    Abarkan M; Gaitan J; Lebreton F; Perrier R; Jaffredo M; Mulle C; Magnan C; Raoux M; Lang J
    Mol Metab; 2019 Dec; 30():152-160. PubMed ID: 31767166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-Switchable Ion Channels and Receptors for Optogenetic Interrogation of Neuronal Signaling.
    Lin WC; Kramer RH
    Bioconjug Chem; 2018 Apr; 29(4):861-869. PubMed ID: 29465988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical control of calcium-regulated exocytosis.
    Izquierdo-Serra M; Trauner D; Llobet A; Gorostiza P
    Biochim Biophys Acta; 2013 Mar; 1830(3):2853-60. PubMed ID: 23178861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling ionotropic and metabotropic glutamate receptors with light: principles and potential.
    Reiner A; Levitz J; Isacoff EY
    Curr Opin Pharmacol; 2015 Feb; 20():135-43. PubMed ID: 25573450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elfn1-Induced Constitutive Activation of mGluR7 Determines Frequency-Dependent Recruitment of Somatostatin Interneurons.
    Stachniak TJ; Sylwestrak EL; Scheiffele P; Hall BJ; Ghosh A
    J Neurosci; 2019 Jun; 39(23):4461-4474. PubMed ID: 30940718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kainate Receptors Inhibit Glutamate Release Via Mobilization of Endocannabinoids in Striatal Direct Pathway Spiny Projection Neurons.
    Marshall JJ; Xu J; Contractor A
    J Neurosci; 2018 Apr; 38(16):3901-3910. PubMed ID: 29540547
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.