These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26869877)

  • 21. Kainate Receptors Inhibit Glutamate Release Via Mobilization of Endocannabinoids in Striatal Direct Pathway Spiny Projection Neurons.
    Marshall JJ; Xu J; Contractor A
    J Neurosci; 2018 Apr; 38(16):3901-3910. PubMed ID: 29540547
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SNAP-Tagged Nanobodies Enable Reversible Optical Control of a G Protein-Coupled Receptor via a Remotely Tethered Photoswitchable Ligand.
    Farrants H; Gutzeit VA; Acosta-Ruiz A; Trauner D; Johnsson K; Levitz J; Broichhagen J
    ACS Chem Biol; 2018 Sep; 13(9):2682-2688. PubMed ID: 30141622
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular Dynamics Investigation of gluazo, a Photo-Switchable Ligand for the Glutamate Receptor GluK2.
    Guo Y; Wolter T; Kubař T; Sumser M; Trauner D; Elstner M
    PLoS One; 2015; 10(8):e0135399. PubMed ID: 26308344
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shedding light on metabotropic glutamate receptors using optogenetics and photopharmacology.
    Goudet C; Rovira X; Llebaria A
    Curr Opin Pharmacol; 2018 Feb; 38():8-15. PubMed ID: 29455105
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Orthogonal Optical Control of a G Protein-Coupled Receptor with a SNAP-Tethered Photochromic Ligand.
    Broichhagen J; Damijonaitis A; Levitz J; Sokol KR; Leippe P; Konrad D; Isacoff EY; Trauner D
    ACS Cent Sci; 2015 Oct; 1(7):383-93. PubMed ID: 27162996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert.
    Reiner A; Levitz J
    Neuron; 2018 Jun; 98(6):1080-1098. PubMed ID: 29953871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Light-induced regulation of ligand-gated channel activity.
    Bregestovski P; Maleeva G; Gorostiza P
    Br J Pharmacol; 2018 Jun; 175(11):1892-1902. PubMed ID: 28859250
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fast Photoswitchable Molecular Prosthetics Control Neuronal Activity in the Cochlea.
    Garrido-Charles A; Huet A; Matera C; Thirumalai A; Hernando J; Llebaria A; Moser T; Gorostiza P
    J Am Chem Soc; 2022 Jun; 144(21):9229-9239. PubMed ID: 35584208
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of a Highly Bistable Photoswitchable Tethered Ligand for Rapid and Sustained Manipulation of Neurotransmission.
    Lin WC; Tsai MC; Rajappa R; Kramer RH
    J Am Chem Soc; 2018 Jun; 140(24):7445-7448. PubMed ID: 29874068
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Light at the end of the channel: optical manipulation of intrinsic neuronal excitability with chemical photoswitches.
    Mourot A; Tochitsky I; Kramer RH
    Front Mol Neurosci; 2013; 6():5. PubMed ID: 23518818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Remote control of neuronal activity with a light-gated glutamate receptor.
    Szobota S; Gorostiza P; Del Bene F; Wyart C; Fortin DL; Kolstad KD; Tulyathan O; Volgraf M; Numano R; Aaron HL; Scott EK; Kramer RH; Flannery J; Baier H; Trauner D; Isacoff EY
    Neuron; 2007 May; 54(4):535-45. PubMed ID: 17521567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assembly and Trafficking of Homomeric and Heteromeric Kainate Receptors with Impaired Ligand Binding Sites.
    Scholefield CL; Atlason PT; Jane DE; Molnár E
    Neurochem Res; 2019 Mar; 44(3):585-599. PubMed ID: 30302614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology.
    Aravanis AM; Wang LP; Zhang F; Meltzer LA; Mogri MZ; Schneider MB; Deisseroth K
    J Neural Eng; 2007 Sep; 4(3):S143-56. PubMed ID: 17873414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optogenetic manipulation of anatomical re-entry by light-guided generation of a reversible local conduction block.
    Watanabe M; Feola I; Majumder R; Jangsangthong W; Teplenin AS; Ypey DL; Schalij MJ; Zeppenfeld K; de Vries AA; Pijnappels DA
    Cardiovasc Res; 2017 Mar; 113(3):354-366. PubMed ID: 28395022
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ivermectin-Activated, Cation-Permeable Glycine Receptors for the Chemogenetic Control of Neuronal Excitation.
    Islam R; Keramidas A; Xu L; Durisic N; Sah P; Lynch JW
    ACS Chem Neurosci; 2016 Dec; 7(12):1647-1657. PubMed ID: 27611437
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthetic Light-Activated Ion Channels for Optogenetic Activation and Inhibition.
    Beck S; Yu-Strzelczyk J; Pauls D; Constantin OM; Gee CE; Ehmann N; Kittel RJ; Nagel G; Gao S
    Front Neurosci; 2018; 12():643. PubMed ID: 30333716
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optogenetics: Applications in psychiatric research.
    Shirai F; Hayashi-Takagi A
    Psychiatry Clin Neurosci; 2017 Jun; 71(6):363-372. PubMed ID: 28233379
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of S-nitrosylation of kainate-type of ionotropic glutamate receptor 2 in epilepsy induced by kainic acid.
    Wang L; Liu Y; Lu R; Dong G; Chen X; Yun W; Zhou X
    J Neurochem; 2018 Feb; 144(3):255-270. PubMed ID: 29193067
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Principles of Optogenetic Methods and Their Application to Cardiac Experimental Systems.
    Ferenczi EA; Tan X; Huang CL
    Front Physiol; 2019; 10():1096. PubMed ID: 31572204
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.