These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26870061)

  • 1. Gene Inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 Suspension Cells.
    Mercx S; Tollet J; Magy B; Navarre C; Boutry M
    Front Plant Sci; 2016; 7():40. PubMed ID: 26870061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of the β(1,2)-xylosyltransferase and the α(1,3)-fucosyltransferase genes in
    Mercx S; Smargiasso N; Chaumont F; De Pauw E; Boutry M; Navarre C
    Front Plant Sci; 2017; 8():403. PubMed ID: 28396675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-mediated gfp gene inactivation in Arabidopsis suspension cells.
    Permyakova NV; Sidorchuk YV; Marenkova TV; Khozeeva SA; Kuznetsov VV; Zagorskaya AA; Rozov SM; Deineko EV
    Mol Biol Rep; 2019 Dec; 46(6):5735-5743. PubMed ID: 31392536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering the
    Göritzer K; Grandits M; Grünwald-Gruber C; Figl R; Mercx S; Navarre C; Ma JK; Teh AY
    Front Plant Sci; 2022; 13():1003065. PubMed ID: 36161010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum.
    Gao J; Wang G; Ma S; Xie X; Wu X; Zhang X; Wu Y; Zhao P; Xia Q
    Plant Mol Biol; 2015 Jan; 87(1-2):99-110. PubMed ID: 25344637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential Genome Editing and Induced Excision of the Transgene in
    Sheva M; Hanania U; Ariel T; Turbovski A; Rathod VKR; Oz D; Tekoah Y; Shaaltiel Y
    Front Plant Sci; 2020; 11():607174. PubMed ID: 33324440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient CRISPR/Cas9-Mediated Gene Editing in an Interspecific Hybrid Poplar With a Highly Heterozygous Genome.
    Wang J; Wu H; Chen Y; Yin T
    Front Plant Sci; 2020; 11():996. PubMed ID: 32719704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9-Mediated Deletion of Large Genomic Fragments in Soybean.
    Cai Y; Chen L; Sun S; Wu C; Yao W; Jiang B; Han T; Hou W
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30513774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishment of a tobacco BY2 cell line devoid of plant-specific xylose and fucose as a platform for the production of biotherapeutic proteins.
    Hanania U; Ariel T; Tekoah Y; Fux L; Sheva M; Gubbay Y; Weiss M; Oz D; Azulay Y; Turbovski A; Forster Y; Shaaltiel Y
    Plant Biotechnol J; 2017 Sep; 15(9):1120-1129. PubMed ID: 28160363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat.
    Zhang S; Zhang R; Song G; Gao J; Li W; Han X; Chen M; Li Y; Li G
    BMC Plant Biol; 2018 Nov; 18(1):302. PubMed ID: 30477421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-targeting by CRISPR/Cas9 leads to efficient point mutagenesis but only rare targeted deletions in the rice genome.
    Pathak B; Zhao S; Manoharan M; Srivastava V
    3 Biotech; 2019 Apr; 9(4):158. PubMed ID: 30944805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean.
    Bao A; Chen H; Chen L; Chen S; Hao Q; Guo W; Qiu D; Shan Z; Yang Z; Yuan S; Zhang C; Zhang X; Liu B; Kong F; Li X; Zhou X; Tran LP; Cao D
    BMC Plant Biol; 2019 Apr; 19(1):131. PubMed ID: 30961525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The application of the CRISPR-Cas9 system in
    Ho J; Zhao M; Wojcik S; Taiaroa G; Butler M; Poulter R
    J Med Microbiol; 2020 Mar; 69(3):478-486. PubMed ID: 31935181
    [No Abstract]   [Full Text] [Related]  

  • 14. CRISPR-Cas9 Based Genome Editing Reveals New Insights into MicroRNA Function and Regulation in Rice.
    Zhou J; Deng K; Cheng Y; Zhong Z; Tian L; Tang X; Tang A; Zheng X; Zhang T; Qi Y; Zhang Y
    Front Plant Sci; 2017; 8():1598. PubMed ID: 28955376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Chromosomal large fragment deletion induced by CRISPR/Cas9 gene editing system].
    Cheng LH; Liu Y; Niu T
    Zhonghua Xue Ye Xue Za Zhi; 2017 May; 38(5):427-431. PubMed ID: 28565744
    [No Abstract]   [Full Text] [Related]  

  • 16. Genome Editing in Cotton with the CRISPR/Cas9 System.
    Gao W; Long L; Tian X; Xu F; Liu J; Singh PK; Botella JR; Song C
    Front Plant Sci; 2017; 8():1364. PubMed ID: 28824692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9.
    Zhu J; Song N; Sun S; Yang W; Zhao H; Song W; Lai J
    J Genet Genomics; 2016 Jan; 43(1):25-36. PubMed ID: 26842991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precise gene deletion and replacement using the CRISPR/Cas9 system in human cells.
    Zheng Q; Cai X; Tan MH; Schaffert S; Arnold CP; Gong X; Chen CZ; Huang S
    Biotechniques; 2014; 57(3):115-24. PubMed ID: 25209046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system.
    Xiong X; Liu W; Jiang J; Xu L; Huang L; Cao J
    Mol Genet Genomics; 2019 Oct; 294(5):1251-1261. PubMed ID: 31129735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.).
    Ren C; Liu X; Zhang Z; Wang Y; Duan W; Li S; Liang Z
    Sci Rep; 2016 Aug; 6():32289. PubMed ID: 27576893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.