BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26870343)

  • 21. Fibroblast growth factor-4 maintains cellular viability while enhancing osteogenic differentiation of stem cell spheroids in part by regulating RUNX2 and BGLAP expression.
    Son J; Tae JY; Min SK; Ko Y; Park JB
    Exp Ther Med; 2020 Sep; 20(3):2013-2020. PubMed ID: 32782511
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of 17β-Estradiol on the Shape, Survival, Osteogenic Transformation, and mRNA Expression of Gingiva-Derived Stem Cell Spheroids.
    Kim JH; Lee HJ; Song HJ; Park JB
    Medicina (Kaunas); 2023 Dec; 60(1):. PubMed ID: 38256321
    [No Abstract]   [Full Text] [Related]  

  • 23. Non-swellable F127-DA hydrogel with concave microwells for formation of uniform-sized vascular spheroids.
    Li Y; Wang Y; Shen C; Meng Q
    RSC Adv; 2020 Dec; 10(72):44494-44502. PubMed ID: 35517174
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual-crosslinked hydrogel microwell system for formation and culture of multicellular human adipose tissue-derived stem cell spheroids.
    Jeon O; Marks R; Wolfson D; Alsberg E
    J Mater Chem B; 2016 May; 4(20):3526-3533. PubMed ID: 32263386
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of size-controllable human mesenchymal stromal cell spheroids from micro-scaled cell sheets.
    Byun H; Bin Lee Y; Kim EM; Shin H
    Biofabrication; 2019 Jun; 11(3):035025. PubMed ID: 31096204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of Albumin Secretion and Metabolic Activity of Cytochrome P450 1A1 of Human Hepatoblastoma HepG2 Cells in Multicellular Spheroids by Controlling Spheroid Size.
    Nishikawa T; Tanaka Y; Nishikawa M; Ogino Y; Kusamori K; Mizuno N; Mizukami Y; Shimizu K; Konishi S; Takahashi Y; Takakura Y
    Biol Pharm Bull; 2017; 40(3):334-338. PubMed ID: 28250275
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quasi-spherical microwells on superhydrophobic substrates for long term culture of multicellular spheroids and high throughput assays.
    Liu T; Winter M; Thierry B
    Biomaterials; 2014 Jul; 35(23):6060-8. PubMed ID: 24797879
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel cylindrical microwell featuring inverted-pyramidal opening for efficient cell spheroid formation without cell loss.
    Cha JM; Park H; Shin EK; Sung JH; Kim O; Jung W; Bang OY; Kim J
    Biofabrication; 2017 Aug; 9(3):035006. PubMed ID: 28726681
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Networked concave microwell arrays for constructing 3D cell spheroids.
    Lee GH; Lee JS; Lee GH; Joung WY; Kim SH; Lee SH; Park JY; Kim DH
    Biofabrication; 2017 Nov; 10(1):015001. PubMed ID: 29190216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Paired Bead and Magnet Array for Molding Microwells with Variable Concave Geometries.
    Lee GH; Suh Y; Park JY
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29443026
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integration of mesenchymal stem cells into islet cell spheroids improves long-term viability, but not islet function.
    Rawal S; Williams SJ; Ramachandran K; Stehno-Bittel L
    Islets; 2017 Sep; 9(5):87-98. PubMed ID: 28662368
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of agarose concave petridish for 3D-culture microarray method for spheroids formation of hepatic cells.
    Zhang B; Li Y; Wang G; Jia Z; Li H; Peng Q; Gao Y
    J Mater Sci Mater Med; 2018 Apr; 29(5):49. PubMed ID: 29675647
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of Concave Microwells and Their Applications in Micro-Tissue Engineering: A Review.
    Guo W; Chen Z; Feng Z; Li H; Zhang M; Zhang H; Cui X
    Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144178
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of tacrolimus on morphology, proliferation and differentiation of mesenchymal stem cells derived from gingiva tissue.
    Ha DH; Yong CS; Kim JO; Jeong JH; Park JB
    Mol Med Rep; 2016 Jul; 14(1):69-76. PubMed ID: 27177273
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recapitulating the Drifting and Fusion of Two-Generation Spheroids on Concave Agarose Microwells.
    Pan R; Yang X; Ning K; Xie Y; Chen F; Yu L
    Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lab-on-a-CD Platform for Generating Multicellular Three-dimensional Spheroids.
    Kim D; Lee GH; Park J; Lee JC; Park JY
    J Vis Exp; 2019 Nov; (153):. PubMed ID: 31762450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Versatile Fabrication of Size- and Shape-Controllable Nanofibrous Concave Microwells for Cell Spheroid Formation.
    Park SM; Lee SJ; Lim J; Kim BC; Han SJ; Kim DS
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):37878-37885. PubMed ID: 30360112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On-chip anticancer drug test of regular tumor spheroids formed in microwells by a distributive microchannel network.
    Kim C; Bang JH; Kim YE; Lee SH; Kang JY
    Lab Chip; 2012 Oct; 12(20):4135-42. PubMed ID: 22864534
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monte Carlo simulation-guided design for size-tuned tumor spheroid formation in 3D printed microwells.
    Eş I; Ionescu AT; Görmüş BM; Inci F; Marques MPC; Szita N; de la Torre LG
    Biotechnol Prog; 2024 Apr; ():e3470. PubMed ID: 38613384
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microchip-based engineering of super-pancreatic islets supported by adipose-derived stem cells.
    Jun Y; Kang AR; Lee JS; Park SJ; Lee DY; Moon SH; Lee SH
    Biomaterials; 2014 Jun; 35(17):4815-26. PubMed ID: 24636217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.