These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26871051)

  • 1. From single-file diffusion to two-dimensional cage diffusion and generalization of the totally asymmetric simple exclusion process to higher dimensions.
    Centres PM; Bustingorry S
    Phys Rev E; 2016 Jan; 93(1):012134. PubMed ID: 26871051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of jams in the generalized totally asymmetric simple exclusion process.
    Derbyshev AE; Povolotsky AM; Priezzhev VB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022125. PubMed ID: 25768476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalous tag diffusion in the asymmetric exclusion model with particles of arbitrary sizes.
    Ferreira AA; Alcaraz FC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):052102. PubMed ID: 12059614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kardar-Parisi-Zhang modes in d-dimensional directed polymers.
    Schütz GM; Wehefritz-Kaufmann B
    Phys Rev E; 2017 Sep; 96(3-1):032119. PubMed ID: 29346934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kardar-Parisi-Zhang universality class in (2+1) dimensions: universal geometry-dependent distributions and finite-time corrections.
    Oliveira TJ; Alves SG; Ferreira SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):040102. PubMed ID: 23679356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kardar-Parisi-Zhang universality of the Nagel-Schreckenberg model.
    de Gier J; Schadschneider A; Schmidt J; Schütz GM
    Phys Rev E; 2019 Nov; 100(5-1):052111. PubMed ID: 31869969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed d -mer diffusion describing the Kardar-Parisi-Zhang-type surface growth.
    Odor G; Liedke B; Heinig KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031112. PubMed ID: 20365702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic screening in a two-species asymmetric exclusion process.
    Kim KH; den Nijs M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021107. PubMed ID: 17930006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bethe ansatz solution of the asymmetric exclusion process with open boundaries.
    de Gier J; Essler FH
    Phys Rev Lett; 2005 Dec; 95(24):240601. PubMed ID: 16384362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping of (2+1) -dimensional Kardar-Parisi-Zhang growth onto a driven lattice gas model of dimers.
    Odor G; Liedke B; Heinig KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021125. PubMed ID: 19391724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical method for accessing the universal scaling function for a multiparticle discrete time asymmetric exclusion process.
    Chia N; Bundschuh R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051102. PubMed ID: 16383588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite-size scaling and universality for the totally asymmetric simple-exclusion process.
    Brankov J; Bunzarova N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036130. PubMed ID: 15903516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic model in the Kardar-Parisi-Zhang universality class with minimal finite size effects.
    Ghaisas SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):022601. PubMed ID: 16605376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aging of the (2+1)-dimensional Kardar-Parisi-Zhang model.
    Ódor G; Kelling J; Gemming S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032146. PubMed ID: 24730828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractality of eroded coastlines of correlated landscapes.
    Morais PA; Oliveira EA; Araújo NA; Herrmann HJ; Andrade JS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016102. PubMed ID: 21867252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Universality in two-dimensional Kardar-Parisi-Zhang growth.
    Reis FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 1):021610. PubMed ID: 14995461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extremal paths, the stochastic heat equation, and the three-dimensional Kardar-Parisi-Zhang universality class.
    Halpin-Healy T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042118. PubMed ID: 24229127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonequilibrium cluster diffusion during growth and evaporation in two dimensions.
    Saito Y; Dufay M; Pierre-Louis O
    Phys Rev Lett; 2012 Jun; 108(24):245504. PubMed ID: 23004291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circular Kardar-Parisi-Zhang equation as an inflating, self-avoiding ring polymer.
    Santalla SN; Rodríguez-Laguna J; Cuerno R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):010401. PubMed ID: 24580156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kardar-Parisi-Zhang asymptotics for the two-dimensional noisy Kuramoto-Sivashinsky equation.
    Nicoli M; Vivo E; Cuerno R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):045202. PubMed ID: 21230337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.