BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 26871068)

  • 1. Uniform framework for the recurrence-network analysis of chaotic time series.
    Jacob R; Harikrishnan KP; Misra R; Ambika G
    Phys Rev E; 2016 Jan; 93(1):012202. PubMed ID: 26871068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical framework for recurrence network analysis of time series.
    Donges JF; Heitzig J; Donner RV; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046105. PubMed ID: 22680536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measure for degree heterogeneity in complex networks and its application to recurrence network analysis.
    Jacob R; Harikrishnan KP; Misra R; Ambika G
    R Soc Open Sci; 2017 Jan; 4(1):160757. PubMed ID: 28280579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase coherence and attractor geometry of chaotic electrochemical oscillators.
    Zou Y; Donner RV; Wickramasinghe M; Kiss IZ; Small M; Kurths J
    Chaos; 2012 Sep; 22(3):033130. PubMed ID: 23020469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method for measuring unstable dimension variability from time series.
    McCullen NJ; Moresco P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046203. PubMed ID: 16711913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing system dynamics with a weighted and directed network constructed from time series data.
    Sun X; Small M; Zhao Y; Xue X
    Chaos; 2014 Jun; 24(2):024402. PubMed ID: 24985456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale characterization of recurrence-based phase space networks constructed from time series.
    Xiang R; Zhang J; Xu XK; Small M
    Chaos; 2012 Mar; 22(1):013107. PubMed ID: 22462983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coexistence of exponentially many chaotic spin-glass attractors.
    Peleg Y; Zigzag M; Kinzel W; Kanter I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066204. PubMed ID: 22304175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new method for generating chaotic system with arbitrary shaped distributed attractors.
    Su Q; Wang C; Chen H; Sun J; Zhang X
    Chaos; 2018 Jul; 28(7):073106. PubMed ID: 30070490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A solution for two-dimensional mazes with use of chaotic dynamics in a recurrent neural network model.
    Suemitsu Y; Nara S
    Neural Comput; 2004 Sep; 16(9):1943-57. PubMed ID: 15265329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grid-based partitioning for comparing attractors.
    Carroll TL; Byers JM
    Phys Rev E; 2016 Apr; 93():042206. PubMed ID: 27176292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disentangling regular and chaotic motion in the standard map using complex network analysis of recurrences in phase space.
    Zou Y; Donner RV; Thiel M; Kurths J
    Chaos; 2016 Feb; 26(2):023120. PubMed ID: 26931601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kernel-Granger causality and the analysis of dynamical networks.
    Marinazzo D; Pellicoro M; Stramaglia S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056215. PubMed ID: 18643150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks.
    Feng CF; Xu XJ; Wang SJ; Wang YH
    Chaos; 2008 Jun; 18(2):023117. PubMed ID: 18601484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recurrence networks to study dynamical transitions in a turbulent combustor.
    Godavarthi V; Unni VR; Gopalakrishnan EA; Sujith RI
    Chaos; 2017 Jun; 27(6):063113. PubMed ID: 28679226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topological properties and fractal analysis of a recurrence network constructed from fractional Brownian motions.
    Liu JL; Yu ZG; Anh V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032814. PubMed ID: 24730906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Standard random walks and trapping on the Koch network with scale-free behavior and small-world effect.
    Zhang Z; Zhou S; Xie W; Chen L; Lin Y; Guan J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061113. PubMed ID: 19658479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex network from time series based on phase space reconstruction.
    Gao Z; Jin N
    Chaos; 2009 Sep; 19(3):033137. PubMed ID: 19792017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chaotic signal detection and estimation based on attractor sets: applications to secure communications.
    Rohde GK; Nichols JM; Bucholtz F
    Chaos; 2008 Mar; 18(1):013114. PubMed ID: 18377065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.