These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 26871119)
1. Two-scale evolution during shear reversal in dense suspensions. Ness C; Sun J Phys Rev E; 2016 Jan; 93(1):012604. PubMed ID: 26871119 [TBL] [Abstract][Full Text] [Related]
2. Discontinuous shear thickening in Brownian suspensions by dynamic simulation. Mari R; Seto R; Morris JF; Denn MM Proc Natl Acad Sci U S A; 2015 Dec; 112(50):15326-30. PubMed ID: 26621744 [TBL] [Abstract][Full Text] [Related]
3. Oscillatory rheology of dense, athermal suspensions of nearly hard spheres below the jamming point. Ness C; Xing Z; Eiser E Soft Matter; 2017 May; 13(19):3664-3674. PubMed ID: 28451674 [TBL] [Abstract][Full Text] [Related]
5. Rheology of Dense Suspensions under Shear Rotation. Blanc F; Peters F; Gillissen JJJ; Cates ME; Bosio S; Benarroche C; Mari R Phys Rev Lett; 2023 Mar; 130(11):118202. PubMed ID: 37001073 [TBL] [Abstract][Full Text] [Related]
6. Solid-solid contacts due to surface roughness and their effects on suspension behaviour. Davis RH; Zhao Y; Galvin KP; Wilson HJ Philos Trans A Math Phys Eng Sci; 2003 May; 361(1806):871-94. PubMed ID: 12804219 [TBL] [Abstract][Full Text] [Related]
7. Flow regime transitions in dense non-Brownian suspensions: rheology, microstructural characterization, and constitutive modeling. Ness C; Sun J Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012201. PubMed ID: 25679613 [TBL] [Abstract][Full Text] [Related]
12. Rheology and contact lifetimes in dense granular flows. Silbert LE; Grest GS; Brewster R; Levine AJ Phys Rev Lett; 2007 Aug; 99(6):068002. PubMed ID: 17930867 [TBL] [Abstract][Full Text] [Related]
13. Microstructure of sheared monosized colloidal suspensions resulting from hydrodynamic and electrostatic interactions. Xu B; Gilchrist JF J Chem Phys; 2014 May; 140(20):204903. PubMed ID: 24880321 [TBL] [Abstract][Full Text] [Related]
14. Alternative Frictional Model for Discontinuous Shear Thickening of Dense Suspensions: Hydrodynamics. Jamali S; Brady JF Phys Rev Lett; 2019 Sep; 123(13):138002. PubMed ID: 31697551 [TBL] [Abstract][Full Text] [Related]
15. Rheology of cubic particles suspended in a Newtonian fluid. Cwalina CD; Harrison KJ; Wagner NJ Soft Matter; 2016 May; 12(20):4654-65. PubMed ID: 27112791 [TBL] [Abstract][Full Text] [Related]
16. Diverging viscosity and soft granular rheology in non-Brownian suspensions. Kawasaki T; Coslovich D; Ikeda A; Berthier L Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012203. PubMed ID: 25679615 [TBL] [Abstract][Full Text] [Related]
17. Shear thickening and migration in granular suspensions. Fall A; Lemaître A; Bertrand F; Bonn D; Ovarlez G Phys Rev Lett; 2010 Dec; 105(26):268303. PubMed ID: 21231719 [TBL] [Abstract][Full Text] [Related]
18. Local shear stress and its correlation with local volume fraction in concentrated non-Brownian suspensions: lattice Boltzmann simulation. Lee YK; Ahn KH; Lee SJ Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062317. PubMed ID: 25615103 [TBL] [Abstract][Full Text] [Related]
19. Shear rheology of hard-sphere, dispersed, and aggregated suspensions, and filler-matrix composites. Genovese DB Adv Colloid Interface Sci; 2012; 171-172():1-16. PubMed ID: 22304831 [TBL] [Abstract][Full Text] [Related]
20. Unifying disparate rate-dependent rheological regimes in non-Brownian suspensions. More RV; Ardekani AM Phys Rev E; 2021 Jun; 103(6-1):062610. PubMed ID: 34271688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]